A summary report by the
Environmental
Justice
Foundation

“...This year the product is very effective. It kills everything – even snakes. Earthworms appeared from the soil in large numbers immediately after spraying, and subsequently died. Even the leaves of the cashew nut trees I planted next to my cotton field turned brown due to the product.” — Cotton Farmer, Aklampa (Benin)?

Above: Shruti, a young Indian girl whose village has long been exposed to aerial spraying of endosulfan, is one of many in her area to exhibit severe congenital deformities, which experts say are caused by endosulfan exposure.

WORLD-WIDE
RESTRICTIONS ON
ENDOSULFAN USE)

Endosulfan is banned in:
Belize, Singapore, Tonga, Syria, Germany, the USA, the Brazilian state Rondonia, the UK, Sweden, Netherlands, Colombia, and the Indian state Kerala.

Endosulfan is severely restricted in:
Australia, Bangladesh, Indonesia, Cambodia, Japan, Korea, Kazakhstan, Kuwait, Philippines, Lithuania, Sri Lanka, Taiwan, Thailand, Denmark, Yugoslavia, Norway, Finland, Russia, Venezuela, Dominica, Canada.

Endosulfan has been identified as a pesticide of concern due to health and environmental problems associated with its use in Ecuador, Mauritius and Paraguay.

END OF THE ROAD FOR ENDOSULFAN

A call for action against a dangerous pesticide

introduction

In this short report, we present compelling evidence of the considerable threats the pesticide endosulfan poses to human health and environmental integrity. In light of the evidence presented, we make a number of key recommendations to the World Health Organisation, national governments, and the agrochemical industry. Implementation of these recommendations will represent a significant step towards protecting people and the natural environment from this hazardous chemical.

Endosulfan is an organochlorine pesticide used primarily to kill insects and mites on crops including tea, coffee, cotton, fruits, vegetables, rice and grains. The chemical is out of patent and is marketed by many different companies and under a variety of names including: Agrosulfan; Aginarosulfan; Banagesulfan; Cyclodan; Endocel; Endoson; Endonit; Endomil; Endosol; Endostar; Endodaf; Endosulfer; E-sulfan; Endorifan; Hildan; Redsun; Seosulfan; and Thiodan.

Pesticide safety is classified by the World Health Organisation (WHO) according to the results of LD$_{50}$ tests, which document the amount of a chemical required to kill 50% of a population of laboratory rats. Under this system, endosulfan is currently classified as Class II – *moderately hazardous to human health*. However, the United States’ Environmental Protection Agency (EPA) rates endosulfan as Category Ib – *highly hazardous*. LD$_{50}$ data for endosulfan are equivocal, with some published results indicating that the chemical should be in the WHO’s Class Ib, according to the organisation’s own criteria. Evidence of the threats to human health posed by endosulfan are abundant, and the chemical has been banned outright or severely restricted in a number of countries as a result (see box). Independent of LD$_{50}$ results, these threats warrant the immediate upgrading of endosulfan to WHO Class Ib.
the danger to human health

Endosulfan is acutely toxic and is readily absorbed by the stomach and lungs, and through the skin. Symptoms of acute endosulfan exposure include central nervous system disorders such as dizziness, vomiting, diarrhoea, breathing difficulties, convulsions, and loss of consciousness. In extreme cases, death can result. Indeed, the chemical has been linked to dozens of accidental deaths in the USA, Colombia, Benin, India, Malaysia, Sudan, and the Philippines.

- In the USA, endosulfan exposure was linked to the death of one farmer and permanent neurological impairment of another.

- In Benin’s Borgou province, endosulfan poisoning caused many deaths during the 1999/2000 cotton season. Official records state that at least 37 people died and a further 36 became seriously ill, although an independent report estimated that nearly 70 people actually lost their lives. In 1999, a boy in Benin died after eating corn sprayed with endosulfan.

- In southern Sulawesi, Indonesia, endosulfan was the leading cause of pesticide poisoning between 1990 and 1993. Of 153 reported poisoning cases, 32 were due to endosulfan.

- In Sudan, in 1988, endosulfan barrels washed in irrigation canals caused fish mortalities and three people died after drinking water from the canal. In 1991, also in Sudan, 31 people died after eating food containing seed sprayed with endosulfan.

- Colombia’s Departmental Committee of Coffee Growers recorded 155 cases of poisoning due to pesticide exposure in 1994, most of which were due to endosulfan. Pesticides Action Network North American reported that in 1993, 60 poisonings and one death occurred in Colombia due to endosulfan use on coffee.

Chronic, sub-lethal effects of endosulfan exposure manifested in experimental rats include liver enlargement, seizures and retarded growth. The EPA states that “available scientific literature suggests that endosulfan may act as a potential endocrine disruptor.” This means that the chemical has the potential to interfere with normal hormone production and activity. Implications of endocrine disruption may include disruption of development, and promotion of certain types of cancer. A major concern, especially in developing countries, is that low protein diets may increase people’s sensitivity to the effects of this pesticide. A further concern is evidence that endosulfan may cause mutagenic effects in humans if exposure is great enough; endosulfan has been shown to be genotoxic to human cells under experimental conditions.

-end-
The effects of endosulfan on non-target species can be swift and devastating. Farmers in Benin have observed birds and frogs dying following consumption of insects sprayed with endosulfan. According to one such farmer, “Fields smell awful two or three days after spraying because virtually every living thing has been killed and starts to rot.”

Endosulfan is also extremely toxic to aquatic life. Research has shown that exposure to endosulfan, even at sublethal doses (50% of LD₅₀), induces behavioural and biochemical changes in fish. Endosulfan runoff from cotton fields killed over 240,000 fish in Alabama (USA) in 1995, despite the pesticide reportedly having been applied according to label instructions. Similarly, mass fish deaths have been reported in India, Benin, Sudan, Germany and Australia.

Dr Michael Berrill of Ontario’s Trent University recently conducted research into the effects of endosulfan on amphibians. Frogs and toads hatched from eggs exposed to low endosulfan concentrations exhibit a depressed “avoidance behaviour”, increasing their likelihood of predation. Tadpoles exposed after hatching experienced elevated mortality, with death being considerably more likely for two-week old tadpoles than those just hatched. Symptoms of sub-lethal poisoning were also observed and included: exhibited hyperactivity, whip-like convulsions, temporary paralysis and slow growth rates. Berrill concluded that the hazard posed by endosulfan is “sufficiently great to warrant its replacement by less toxic alternatives wherever possible.” In a separate experiment with red-spotted newts, low-concentration exposure to endosulfan impaired the pheromonal system, thereby disrupting mate choice and reducing mating success.

Like the widely banned pesticides DDT and dieldrin, endosulfan is an organochlorine and, as such, is persistent in the environment. Endosulfan degrades relatively quickly in water (half life = 2-22 days), but persists longer in soil (half life = 60-800 days), and its major degradation product, endosulfan sulphate, is not only more persistent but is equally toxic. Endosulfan bioaccumulates in humans and other animals (particularly in their liver, kidneys and fatty tissue). Experiments have shown endosulfan to accumulate to 600 times the ambient water concentration in mussels (Mytilus edulis).

Such persistent organic pollutants (POPs) are of concern because of their long-term subtle effects on hormones, the immune system, and reproduction. Because of endosulfan’s toxicity to fish, Canadian regulations discourage farmers from using endosulfan near open water. However, aerial drifting of the pesticide can leave residues up to three meters beyond the perimeter of sprayed agricultural fields. Ultra low volume endosulfan products were banned in Australia, where spray drift had been resulting in residue problems for the beef industry. Indeed, endosulfan residues led to South Korea’s rejection of Australian beef in the past. Similarly, in 1999, the European Union temporarily suspended imports of fish from Tanzania, Uganda and Kenya because of contamination with pesticides, including endosulfan.

Given the serious health concerns associated with endosulfan exposure, it is highly worrying that a report by the International Programme on Chemical Safety stated that endosulfan has been shown to persist on the hands of pest control operators for up to 31 days after exposure.

Top: Deformed cow from area of heavy endosulfan use in Kerala, southern India. Endosulfan residues measured in cow milk and flesh in Kasaragod province were over 100 times the permissible level.
Above: Endosulfan has caused mass deaths of fish on five continents.
The INDICATIONS are that endosulfan poses serious risks to human health, especially under conditions of use in developing countries. Indeed, the chemical has been implicated in scores of cases of accidental death across the globe and long-term exposure has been linked to a range of serious disorders among villagers of southern India.

The pesticide kills indiscriminately, affecting not only pests, but also a range of other harmless or beneficial insects, with similar ramifications for species further up the food chain. Endosulfan’s ability to harm is reflected in the death of vertebrate species following consumption of previously exposed insects or exposure to contaminated water. This document is a synthesis of evidence that endosulfan presents considerable risk to humans and the environment. In light of this, the Environmental Justice Foundation is making the following recommendations:

- **Endosulfan is a highly dangerous, outdated chemical, the safe use of which cannot be guaranteed by many poor countries where it is still used. Governments should ban endosulfan use and Designated National Authorities in countries that are signatories of the Rotterdam Convention should propose the chemical for inclusion in the Convention’s Prior Informed Consent procedure.**

- **Endosulfan is a persistent chemical that has been demonstrated to bio-accumulate in exposed organisms. As such, it should be included on the list of Persistent Organic Pollutants targeted for global elimination by the Stockholm Convention.**

- **To further promote better practice, the World Health Organisation should: upgrade endosulfan from Class II (moderately hazardous) to Class Ib (highly hazardous), in line with the USA’s EPA classification. Such a move would assit countries like Cambodia, which has banned all Class Ia and Ib chemicals, to promote safer agrochemical practices.**

- Ultimately, the action most ably protecting human and environmental health would be the withdrawal from sale of endosulfan. This requires the agrochemical industry to rapidly phase out production of endosulfan and to dispose of all stockpiles safely.

- **Safe alternatives to endosulfan must be researched, identified and widely promoted. Pesticides Action Network Asia-Pacific lists a number of alternatives to endosulfan use in different agricultural contexts.** These include use of botanical pesticides (neem extracts) and parasitic wasps in rice production, and the use of baculoviruses, natural enemies and pheromone traps to control cotton pests.

Acknowledgements

This report was written, edited and produced by the Environmental Justice Foundation Ltd. Printed on 100% post-consumer waste paper.

Design by Dan Brown (dan.brown@ukf.net).

We wish to thank the following individuals and organisations for providing information, ideas, literature and visual material, critical reviews of earlier drafts, or assisting in other ways.

Mr Jayakumar C, Mr Shree Padre, THANAL (India), OBEPAB (Benin), CEDAC (Cambodia), Dr Ellisbath Gillette, LaDon Swann, and Barbara Dinhm / Pesticide Action Network UK.

In thanking these individuals, we in no way imply that they or their organisations fully endorse the report’s content.

More Information

Rotterdam Convention Homepage
www.pic.int

Stockholm Convention Homepage
www.chem.unep.ch/sc/

UNEP Chemicals
www.chem.unep.ch/

World Health Organisation Pesticide Evaluation Scheme
www.who.int/cid/whopes/

Pesticides Action Network
www.pan-international.org

Environmental Justice Foundation
www.ejfoundation.org

Environmental Justice Foundation is a London-based non-governmental organisation. More information about EJF’s work and pdf versions of this and other reports can be found at www.ejfoundation.org. Comments on the report, requests for further copies or specific queries about EJF should be directed to info@ejfoundation.org.

This document should be cited as:

RELATED EJF PUBLICATIONS

AVAILABLE FROM:

www.ejfoundation.org/reports.html

References

1. www.indiatogether.org/petitions/endosulfan/world.htm

Environmental Justice Foundation Ltd
non-profit company no. 01883159
5 St Peter’s St, London N1 8JD, UK
tel: 44 (0) 20 7359 0440
fax: 44 (0) 20 7359 7123
info@ejfoundation.org
www.ejfoundation.org

4 END OF THE ROAD FOR ENDOSULFAN

21. Oryzaeae. per angus-norris@spirefieladll.html.