Innovations in Rural Extension
Case Studies from Bangladesh

Edited by Paul Van Mele, CABI Bioscience, Egham, UK, A Salahuddin and N P Magor, International Rice Research Institute, Bangladesh

From 1999 to 2004 the PETRRA (Poverty Elimination Through Rice Research Assistance) project explored the development of innovative extension mechanisms through a learning by doing process with multiple service providers. Partnerships linked government, non-government and private sectors as appropriate. Topics addressed by the project include seed production, marketing and distribution systems, crop and soil fertility management, postharvest technologies, mobile pumps, aromatic rice and integrated rice-duck farming. The methods used include women-led group extension, whole family approach, participatory video, Going Public and picture songs. This book examines these approaches to extension and assesses their potential for replicability and scaling-up. It includes four thematic sections with people-centred case studies and a conclusion with practical applications of the transaction cost theory. This highly original volume will interest a wide range of readers concerned with agricultural extension and rural development.
Innovations in Rural Extension
Case Studies from Bangladesh
Innovations in Rural Extension
Case Studies from Bangladesh

Edited by
Paul Van Mele
CABI Bioscience
United Kingdom

Ahmad Salahuddin and Noel P. Magor
IRRI
Bangladesh

CABI Publishing
MORE DETAILS TO BE PROVIDED BY PUBLISHER

All photos are copyrighted by the individual contributors. Paul Van Mele provided the bulk of photos, except for the following: Jo Van Mele (p 16, 42, 46, 72, 151, 153, 195, 206, 218 and 227); Marcella Vrolijks (p 19, 22, 247-251); Jeffery Bentley (p 82, 85, 116-120); Mamunul Haque (p 70 and 154); APEX (p 171-177); IRRI (p 133); AKM Zakaria (p 112) and Paula Nash (p 109).

Cover design: Marcella Vrolijks
Text lay out and photo editing: Zahurul Hoque Shahin (freelance studio for creation) and Marcella Vrolijks
Printed and bound by Intergraphic Limited, Dhaka, Bangladesh
Contents

Contributors
List of tables
List of figures
List of boxes
Acknowledgements

Part I: Introduction

1. **PAUL VAN MELE**
 - New road map
 - Documentation
 - Learning with PETRRA
 - Pathways out of poverty
 - Changing directions
 - Structure of the book
 - References

Part II: Gender

2. **THELMA PARIS, SHAILA ARIFA NABI, AHMAD SALAHUDDIN AND NOEL P. MAGOR**
 - The right to learn: women want more agricultural advice
 - Introduction
 - Incorporating gender concerns
 - Needs assessment and constraints analysis
 - Call for concept notes and the PETRRA approach to gender
 - Enhancing men and women’s knowledge and skills
 - Testing and validating technologies with farmers
 - Testing different types of trainers and groups
 - Testing learning tools with women
 - What women learnt
 - Major lessons from working with women
 - Conclusion
 - References

3. **HELEN LATIFUN NESSA AND PAUL VAN MELE**
 - Breaking down barriers: village women spread the word

4. **HARUN-AR-RASHID**
 - Family approach in extension

5. **PAUL VAN MELE, A. K. M. ZAKARIA, RINA NASRIN, BASANTI CHAKROBORTY, MD. MOJAHERUL HAQUE AND JOSEPHINE RODGERS**
 - Bringing science to life: video development for women-to-women extension

Part III: Learning with rural communities
Creative learning methods

Introduction

Bidding and learning with PETRRA
PETRRA case studies
Watch and learn
Village soil fertility maps
Going public
Picture songs

New directions in farmer training

In each sub-project staff learnt something from farmers
Learning content: appropriate technologies
Methods: face-to-face and the media
Marrying methods to content
Mixing methods

Conclusion

References and recommended reading

Watch and learn: video education for appropriate technology

Village soil fertility maps

Going Public: a quick way to interact with communities

Picture songs

Part IV: Enterprise webs

The enterprise web

Introduction
A generic example of an enterprise web
The enterprise web as an explanatory and micro-analytical tool
Selection and documentation of case studies
Integrated rice-duck production
Manufacturing and marketing mobile pumps
Producing, processing and marketing aromatic rice
Insights from the use of the enterprise web
Learning about process
In pro-poor extension social capital is critical
Introducing the concept of governance
Challenges for the enterprise web as a tool
Achieving rigor in visualising the enterprise web
Committing resources
Extension method costing
Unfreezing the culture to go solo
Conclusion
References

12 MALIK ANWAR KHAN, GAZI JASHIM UDDIN AHMED, NOEL P. MAGOR AND AHMAD SALAHUDDIN
Integrated rice-duck: a new farming system for Bangladesh

13 BADRUL ALAM, NOEL P. MAGOR AND PAUL VAN MELE
Pump it up: developing a pro-poor mobile pump market

14 M. HASSANULLAH, ABDUS SALAM, SAUM AHMED AND NOEL P. MAGOR
Adding flavour: a value chain approach for aromatic rice

Part V: Pro-poor seed systems

15 SOLVEIG DANIELSEN, MD. KHAIROL BASHAR AND MARK HOLDERNESS
Innovations in seed systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>185</td>
</tr>
<tr>
<td>The challenge</td>
<td>186</td>
</tr>
<tr>
<td>Historical context</td>
<td>186</td>
</tr>
<tr>
<td>PETRRA case studies</td>
<td>187</td>
</tr>
<tr>
<td>Varieties and seed-based technologies</td>
<td>189</td>
</tr>
<tr>
<td>Rice biodiversity</td>
<td>189</td>
</tr>
<tr>
<td>Identifying appropriate technologies</td>
<td>190</td>
</tr>
<tr>
<td>Demand and farmer awareness</td>
<td>190</td>
</tr>
<tr>
<td>Recognising the value of good seed</td>
<td>191</td>
</tr>
<tr>
<td>Assuring timely supply of affordable seed</td>
<td>191</td>
</tr>
<tr>
<td>Farm-saved seed: scope for improvements</td>
<td>192</td>
</tr>
<tr>
<td>Matching seed and outlet markets - the long-term perspective</td>
<td>193</td>
</tr>
<tr>
<td>Quality assurance</td>
<td>194</td>
</tr>
<tr>
<td>Communication and partnerships</td>
<td>194</td>
</tr>
<tr>
<td>Maintaining the incentives</td>
<td>196</td>
</tr>
<tr>
<td>Farmers</td>
<td>196</td>
</tr>
<tr>
<td>NGOs</td>
<td>197</td>
</tr>
<tr>
<td>Private sector</td>
<td>198</td>
</tr>
<tr>
<td>Government institutions</td>
<td>198</td>
</tr>
<tr>
<td>Conclusion</td>
<td>199</td>
</tr>
<tr>
<td>References and recommended reading</td>
<td>200</td>
</tr>
</tbody>
</table>

16 MUSHARRAF HUSAIN
More is more: validating rice varieties with NGOs and poor farmers

17 MD. KHAIROL BASHAR, AHMAD SALAHUDDIN AND PAUL VAN MELE
Building a rice seed network

18 PAUL VAN MELE
Farmseed: putting farmers at the heart of the seed system

19 PAUL VAN MELE, AHMAD SALAHUDDIN AND MD. ABDUL JABBAR
Grameen seed: Grameen experiments with a pro-poor seed business
Innovating with federations: community institutions take the lead in seed marketing

Part VI: Synthesis

People and pro-poor innovation systems

- Extension, complexity and poverty
- People matter
 - Extension policy and public sector
 - Donors and flexibility
 - Projects, service providers and potential champions
 - Reaching rural women: policy and reality
- Transaction costs: bringing people into economics
 - Transaction costs in pro-poor service delivery
 - Vertical integration or strategic networks
- Diversity of service providers
 - Multiple actors: competing or complementing?
 - Local governments
 - Learning networks and forums
- Multiple extension and learning methods
 - Transaction costs in receiving extension services
 - Learning from farmer field schools
 - Other methods: going to scale
 - Multiple learning tools
- Innovation systems research
- Unfinished business
- References and recommended reading

Acronyms and abbreviations
Glossary of special terms
Administrative units in Bangladesh
Map of Bangladesh
Index
CONTRIBUTORS

The editors

Paul Van Mele is an agricultural scientist from Ghent University, Belgium. Since 1992, he lectured and worked in various multi-disciplinary research projects in Africa and Asia. His PhD explored Vietnamese fruit farmers’ knowledge on pest management (Wageningen University, 2000). Besides numerous publications, he wrote Ants as Friends (2003) and edited Way out of the Woods (2003). In 2004, his video project on post-harvest innovations with women in Bangladesh won an international award for effective communication from the International Visual Communication Association in London. Paul Van Mele is a farmer participatory research and learning specialist at CABI.

Ahmad Salahuddin graduated in 1984 as a sociologist from Rajshahi University, Bangladesh. In 1995 he obtained his MA in development studies from the Institute of Social Studies in The Hague, The Netherlands. He has a strong background in facilitation, participatory action research, project planning and feasibility studies of development projects, especially related to water management. As research programme manager of PETRRA, Salahuddin was responsible for capacity building of all project partners from 1999 to 2004. Most experiences documented in this book reflect his strong input.

Noel Magor first came to Bangladesh in 1977, initially with the NGO HEED and then with IRRI and BRRI as a farming systems agronomist. He completed his PhD ‘Empowering Marginal Farm Families in Bangladesh’ and a post doctoral fellowship on business and rural poverty reduction. In 1999, he was appointed project manager for PETRRA. He is the IRRI representative and a visiting fellow with the School of Politics and History of Adelaide University. His holistic approach to working with resource-poor farmers has resulted in his qualifications embracing both technical and social sciences.

The authors (in order of appearance)

Thelma Paris is a socio-economist and gender specialist at the International Rice Research Institute for the past 28 years. She received her PhD in social ecology at the University of Western Sydney in 2000. Her engagement in research on socio-economics of farming systems, human nutrition, farmer participatory plant breeding, gender issues in rice farming and impact of out-migration on rice farming efficiency and gender won her numerous international (CGIAR Excellence Award for Local Professional) and national awards. She has helped various international and national rice research centres in developing strategies for mainstreaming gender concerns.

Shaila Arifa Nabi is a geneticist and member of the Participatory Promoter’s Society of Bangladesh. Under PETRRA, as a younger member of the team, she supported strengthening gender dimensions in all research and extension sub-projects. In 2003, she participated in a six-month long “Professional Capacity Building Programme for Agricultural R&D” at ICRA, Wageningen, The Netherlands.

Helen Latifun Nessa received her MA in social science from Dhaka University in 1986 and a diploma in rural development from India. For more than 20 years she worked with NGOs and national and international consulting firms on socio-economic studies, stakeholders analysis, community development, gender training and organisational
development. Under PETRRA, the NGO Agricultural Advisory Society contracted her to lead a project on women-led group extension with resource-poor women. Ms. Helen possesses great expertise in organising and mobilising target groups or communities for any development approach.

Harun-Ar-Rashid is an agronomist who received his MSc from the Bangladesh Agricultural University and his MS in crop physiology from Reading University, UK. He has been working in agricultural research, development and extension in Bangladesh for the last 27 years for GOs, NGOs, national and international organisations, and private sector. He wrote several books, booklets, and manuals on agricultural production practices for farmers and extension agents. Harun-Ar-Rashid is the founding executive director of the Agricultural Advisory Society, a leading national agricultural-oriented NGO.

A. K. M. Zakaria is an agronomist with an MS from the Bangladesh Agricultural University (1985). For the last 15 years he has been working at the Rural Development Academy (RDA) in Bogra, where he is deputy director agriculture. Apart from having managed several research and development projects, he furthered his studies in Japan, Germany and at IRRI in the Philippines. His main professional interests are in the seed sector and rural communication. In 2004, RDA received the national Independence Day Award and an International Visual Communication Award due to his endeavours.

Md. Mojaherul Haque is an agronomist who was awarded his MS from the Bangladesh Agricultural University in 1999. He has been working at RDA Bogra since 2000 as research officer in various agricultural development projects.

Bashanti Chakroborty is a senior project coordinator in the women-focused NGO TMSS, Bogra.

Rina Nasrin is working as senior manager in the women-focused NGO TMSS, Bogra, for which she has been working for 11 years. Before that, she worked as a trainer for Socio-Impact, a research and consultancy agency.

Josephine Rodgers is a media producer with a degree in agricultural science and an MA in mass communications. She is director of the UK-based company Countrywise Communication and specialises in rural development, agriculture and the food sector. She has spent 19 years producing award-winning training programmes for organisations worldwide. The training provided by Mrs. Rodgers resulted in effective team of video makers at the Rural Development Academy and the women’s NGO TMSS in Bogra.

Jeff Bentley is an agricultural anthropologist (PhD, University of Arizona, 1986). He has worked with smallholder farmers his whole career. He spent a year in Portugal, living with craft farmers (1983-84). He spent seven years in Honduras (1987-94) at Zamorano, an agricultural college, helping researchers and smallholders create appropriate integrated pest management technology. In 2002, Bentley and Peter Baker wrote a Manual for Collaborative Research with Smallholder Coffee Farmers (CABI). Jeff Bentley lives in Bolivia and is an international consultant.

Mohammad Abu Saleque is a soil scientist, who obtained his PhD from the University of the Philippines, Los Banos, in 1994. His research interest is soil fertility and plant nutrition. He is a believer of participatory research and possesses an open mind to learn
from farmers. He has been working for the Bangladesh Rice Research Institute for the last 21 years. Since 1999 Dr. Saleque is teaching at the Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh as an adjunct faculty member.

Paula Nash is co-ordinator of the CABI Global Plant Clinic based in the UK. She assisted with many training courses for extension staff, including a forest pathology course on diagnostic techniques. In 2003, she received her MSc from Reading University in Tropical Agricultural Development. Paula became interested in extension through the work of her colleagues at CABI and tutors at Reading. For her dissertation she compared conventional and novel extension approaches in Bangladesh.

Mostafa Nuruzzaman is founder and director of the NGO Shushilan, and holds an MSS & LLB degree in political sciences from the Dhaka University. He has profound experience in rural development, agricultural research and extension. His charismatic leadership and unflinching commitment towards helping the poor has earned him immense people's respect.

Qazi W. Nawaz graduated from the Bangladesh University of Engineering and Technology in 1971. He joined the Public Works Department in 1973 for ten years, and worked for various private firms for six years. Since 1989 he has been involved in development activities, with a special interest in ecological agriculture. Mr. Nawaz has been working in Shushilan as research and development adviser since 1998.

Md. Rafiqul Haque graduated in agriculture from the Bangladesh Agricultural University in 1987. He has thirteen years of experience in agricultural related development work in different organization. He has been working in Shushilan as coordinator of sustainable environment resource management since 2003.

Malik Anwar Khan obtained his Masters in Bengali language and literature at the University of Chittagong in 1978. After graduation he joined the national NGO Friends in Village Development Bangladesh (FIVDB), based in Sylhet, where he is co-ordinator of the Poultry Programme. He went on study visits to the Philippines, Thailand and the UK. His life-long experience in duck production has been captured in three illustrated books. Under PETRRA, Mr. Malik had his first exposure to rice-duck, for which he visited China in 2002 and published a new guide book with Dr. Gazi Jashim.

Gazi Jashim Uddin Ahmed obtained his MSc (1976) and PhD (1996) in agronomy from the Bangladesh Agricultural University. He has been team leader of various research projects, and has a special interest in weed science. Under PETRRA he was principal investigator of the “Integrated rice-duck farming for resource-poor farm household” project. He is an adjunct faculty member of the Bangladesh Agricultural University and head of the Agronomy Division, BRRI.

Badrul Alam graduated in 1978 as an agricultural engineer from the Bangladesh Agricultural University. In 2002 he obtained his MBA from Newport University, USA. His whole career evolved around the establishment of sustainable markets for irrigation equipment, of which five years for the governmental Bangladesh Agricultural Development Corporation (BADC, 1978-1983), three years as chairman of a local NGO, and more than ten years for the NGO International Development Enterprises (IDE), where he works until today. Mr. Badrul has a unique expertise in developing local
networks with pump producers, dealers, mechanics, local governments, NGOs and poor farmers.

M. Hassanullah has degrees in agronomy and extension education and holds a PhD in business administration. He has 40 years of experience in agricultural research, extension and education, GO-NGO-business partnerships and community development. Presently, he is working as agricultural marketing specialist with a multi-disciplinary team of local and international consultants to prepare an ADB funded Agribusiness Development Project. Dr. Hassanullah is a life member of the Association for International Agricultural Extension Education, Ohio, USA, the Indian Society of Extension Education, the Institute of Management Consultant of Bangladesh and a former President of the Bangladesh Agricultural Extension Society.

Md. Abdus Salam received his agricultural degree from the Bangladesh Agricultural University in 1973. He was senior manager at the Bangladesh branch of British American Tobacco for 15 years. He worked as specialist in projects funded by SIDA/NORAD and USAID conducting adaptive research to support poor and marginal farmers. His life-long experience of contract growing and marketing of agricultural products was strengthened by visits to the USA, China, India and Thailand. Presently, Mr. Salam is executive director of APEX, a national NGO that works on agriculture, health, education, environment and gender issues.

Salim Ahmed graduated from the Bangladesh Agricultural University in 2000 and received his MBA from Trinity University & College, Delaware, USA in 2002. He worked for Winrock International, after which he joined the NGO APEX and became marketing officer at the Bangladesh Rice Exporters Association, funded by PETRRA. Currently, Mr. Salim is a lecturer agriculture and part-time consultant.

Solveig Danielsen is a plant pathologist (PhD, Royal Veterinary and Agricultural University of Denmark (KVL), 1998). She spent two years at CATIE in Costa Rica (1995-1997) and another two years at the International Potato Center in Peru (1999-2001) doing research on tropical plant diseases and crop protection. During her period as an associate professor at KVL from 2001 to 2004 she became increasingly engaged in work related to seed health and seed supply in developing countries. She is now working for Danida in Nicaragua as an agricultural extension and research systems adviser.

Md. Khairul Bashar started his career as a rice breeder in 1979 at the Bangladesh Rice Research Institute (BRRI) and became a conservationist and seed technologist by experience. He is one of the pioneers to apply farmers’ knowledge and carry out participatory research under vulnerable ecosystems in Bangladesh. He frequently interacts with DAE, NGOs and farmers (including tribal groups) for rice germplasm collection, variety testing at farmers’ fields and on-farm rice germplasm conservation. Under PETRRA he initiated a multi-actor rice seed network. Dr. Bashar is well linked to policy makers and the seed industry in Bangladesh.

Mark Holderness is director of agriculture for CAB International, based at the UK Centre of CABI Bioscience. Originally a plant pathologist, Dr. Holderness was instrumental in the development of the Seed Health Improvement sub-project, the largest sub-project under PETRRA, and of the Good Seed Initiative, a global partnership addressing the seed needs of the resource-poor. He has worked in a wide variety of
development contexts, including five years in Papua New Guinea, and particularly addresses the linkage of farmer innovation with that from science, in sustainable agriculture and integrated pest management.

Musherraf Husain is head of the Adaptive Research Division of the Bangladesh Rice Research Institute. He obtained a PhD in agronomy from Lincoln University, New Zealand in 1985 and published about thirty scientific papers. As an adaptive researcher Dr. Musherraf is deeply involved in extension systems, working with farmers, government and non-government extension service providers.

Md. Abdul Jabbar graduated from the Bangladesh Agricultural University in 1987. He has vast experience in seed production and since 1993 he has been in charge of the Seed Processing Centre of the Grameen Krishi Foundation. Under PETRRA Mr. Jabbar experimented with pro-poor innovations in the GKF seed sector.

Syed Samsuzzaman holds a PhD in agronomy from the University of the Philippines, Los Banos, Philippines. He has been directly involved in farming systems research and development programmes since joining the Bangladesh Agricultural Research Institute in 1985. He developed the Integrated Homestead Farming Model for landless and marginal farmers in Bangladesh, which received an award in EXPO 2000 in Hannover, Germany. Since 1996 he has been with RDRS, a national NGO, where he currently is director livelihoods, influencing government policies and practices. Dr. Zaman is co-founder of the Northwest focal area forum.
List of Tables

Table 2.1 PETRRA’s research on extension: different types of trainers and groups 21
Table 2.2 PETRRA’s research on extension: communication tools for poor women 24
Table 3.1 Differences between existing women groups and newly established ones for agricultural extension 32
Table 3.2 Photograph-supported women’s group discussions 34
Table 3.3 Percentage adoption of technologies by poor women in Kishoreganj and Habiganj districts 35
Table 4.1 Knowledge retention with family approach versus training single sex groups 44
Table 4.2 Percent of farmers adopting new rice technologies in their own fields 45
Table 5.1 Process variables of the Women-to-Women Seed Health Video sub-project 50
Table 5.2 Post-harvest interventions addressed in videos 53
Table 5.3 Results of the Women-to-Women Seed Health Video sub-project 59
Table 6.1 Key features of learning methods tested under PETRRA 67
Table 6.2 Versatility of learning methods 73
Table 7.1 Post-harvest innovations shown in video programmes 79
Table 7.2 Changes in knowledge and attitude of women with farmer-to-farmer versus video-supported extension 81
Table 7.3 Post-harvest innovations and their scaling-up potential 83
Table 8.1 Evolution of farmer-to-farmer extension for soil fertility management 92
Table 8.2 Response of rice to different soil fertility management packages in Habiganj and Moulvibazar, 2002-2003 93
Table 8.3 Fertiliser use in farmers’ practice (FP) and improved practice (IP) plots in Srimongal upazila, Moulvibazar, 2002-2003 94
Table 9.1 Overview of Going Public events in various CABI projects 106
Table 9.2 Local names for bakanae given by farmers when shown infested plants at a Going Public session, Sundarpur, 2003 111
Table 10.1 Cost-benefit analysis of rice-duck farming 145
Table 10.2 Actors involved in rice-duck project in Bangladesh, 2001-2003 146
Table 10.3 Rice-duck activities in three districts of Bangladesh, 2001-2003 147
Table 11.1 Number of mobile pumps sold by network members to poor farmers 162
Table 11.2 Net profit of dealers after selling mobile pumps for two seasons 165
Table 12.1 Sources of capital for procuring mobile pumps 166
Table 13.1 Classification of modern and local rice varieties based on grain size 170
Table 13.2 Profile of various actors in aromatic rice value chain 172
Table 13.3 Investment analysis for upgrading rice mills 176
Table 14.1 Seed innovation systems under PETRRA 188
Table 14.2 Strengths and weaknesses of rice seed supply systems in Bangladesh, 2004 197
Table 15.1 Comparison between seed producers under the rice seed network 211
Table 15.2 Comparison of old and new seed distribution systems 213
Table 15.3 Actors involved in quality control under rice seed network, 2004 217
Table 16.1 Characteristics of partner organisations in Farmseed model 223
Table 16.2 Main producers and distributors of rice seed in Bangladesh 224
Table 16.3 Number of farmers trained under Farmseed 228
Table 17.1 Overview of Grameen Krishi Foundation programmes 234
Table 19.2 Traditional GKF versus Grameen seed innovation system 236
Table 19.3 Price (Tk per kg) that clients pay to different seed suppliers in the Grameen seed
innovation system, boro season 2003 240
Table 21.1 Qualitative assessment of extension methods 277
Table 21.2 Suggested use of extension methods 280

List of Figures

Figure 6.1 Learning methods tested under PETRRA with audience size 73
Figure 9.1 Steps of Going Public 107
Figure 11.1 Enterprise web with potential generic activities 129
Figure 12.1 Enterprise web for rice-duck farming 149
Figure 13.1 Enterprise web for mobile pump uptake for poor men and women 160
Figure 14.1 Enterprise web for aromatic rice production, processing and marketing 174
Figure 16.1 Validating varieties with government-NGOs-farmers 207
Figure 17.1 Old and new seed systems in Bangladesh 210
Figure 17.2 Flows of breeder, foundation and quality seed through the rice seed network 214
Figure 17.3 Evolution of breeder seed purchase by government, NGOs and private sector 215
Figure 18.1 Experimenting with inclusion of smaller NGOs in the rice seed chain by AAS225
Figure 19.1 Traditional GKF rice seed production and marketing system 235
Figure 19.2 Grameen seed innovation system 238
Figure 19.3 Example of multiple roles of a seed producer in Grameen seed innovation system 241

List of Boxes

Box 1.1 Innovations 4
Box 1.2 PETRRA’s Values 5
Box 1.3 Gender and Poverty 7
Box 2.1 The Woman and the Rose 18
Box 3.1 A New Need 30
Box 3.2 Teeth of Gold 38
Box 5.1 To the Crossroad 51
Box 5.2 Thinking Big 58
Box 7.1 How Video Can Make a Difference 78
Box 7.2 Technologies That Are Easier to Adopt 80
Box 7.3 Igniting Experimentation 84
Box 8.1 Farmers Lay Basis for New Lab Technique 91
Box 8.2 Mexican Smallholders also Understand Soil 97
Box 9.1 Learning about Clean Seed in a Market 110
Box 10.1 Teach Your Husband Well 122
Box 10.2 A Lasting Impact 123
Box 11.1 Transaction Cost Theory 131
Box 11.2 On the Struggle with Cross-Disciplinary Language 138
Box 12.1 Community Approaches in Rice-Duck 150
Box 13.1 More on the Mobile Pump 158
<table>
<thead>
<tr>
<th>Box</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2</td>
<td>I Feel Good</td>
<td>163</td>
</tr>
<tr>
<td>13.3</td>
<td>The Mechanics of a Bright Future</td>
<td>165</td>
</tr>
<tr>
<td>15.1</td>
<td>Quality Declared Seed in Tanzania</td>
<td>194</td>
</tr>
<tr>
<td>15.2</td>
<td>Government Responsibilities in Seed Supply</td>
<td>199</td>
</tr>
<tr>
<td>17.1</td>
<td>A Telephone Request for Breeder Seed</td>
<td>216</td>
</tr>
<tr>
<td>17.2</td>
<td>Overcoming Local Seed Shortages</td>
<td>220</td>
</tr>
<tr>
<td>19.1</td>
<td>Administrative Units in Bangladesh</td>
<td>234</td>
</tr>
<tr>
<td>20.1</td>
<td>Hanging Banners</td>
<td>249</td>
</tr>
<tr>
<td>20.2</td>
<td>Bagging Seed</td>
<td>252</td>
</tr>
<tr>
<td>20.3</td>
<td>Institutionalising Participatory Research under PETRRA</td>
<td>253</td>
</tr>
<tr>
<td>21.1</td>
<td>Minister Endorses Focal Area Forums</td>
<td>272</td>
</tr>
<tr>
<td>21.2</td>
<td>Farmer Field Schools at a Glance</td>
<td>275</td>
</tr>
<tr>
<td>21.3</td>
<td>Suggestions for Successful Innovation Systems</td>
<td>285</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

All case studies presented in this book emerged under the Poverty Elimination Through Rice Research Assistance or PETRRA project, funded by the UK Department for International Development (DFID). From 1999 to 2004, the project was managed by the International Rice Research Institute (IRRI) in close collaboration with the Bangladesh Rice Research Institute (BRRI).

The richness of this book is a direct result of the strong commitment towards learning by doing. We recognise the donor DFID in its generous support to the experimentation shared in this book. IRRI senior management willingly endorsed local innovation. BRRI through its chairing of the Technical Committee encouraged diversity. The Secretary of Agriculture as the chairperson of the Project Steering Committee for PETRRA kept all lead institutions in research and extension informed and supported the innovations coming from PETRRA. We recognise the PETRRA Project Management Unit for providing an enabling environment for partner organisations to experiment.

We are indebted to Jeffery Bentley for his inspiring editorial inputs in major parts of the book. Other people who provided valuable ideas or commented on one or more chapters are Teeka Bhattarai, Stephen Biggs, Eric Boa, Hugh Brammer, Ann Braun, Solveig Danielsen, Toon Defoer, Helga Duhou, Chris Garforth, John Gaunt, Don Griffiths, Andy Hall, KL Heong, Janice Jiggins, Niels Louwaars, Rose Magor, Peter Mayer, Craig Meisner, Nick Nathaniels, Alastair Orr, Sam Page, Nathalie Peters, Jan Torp Petersen, Barry Pound, Scott Rousseu, Robert Tripp, Patrick Van Damme, Elske van de Fliert, Janny Vos and Marcella Vrolijks.
Part I: Introduction
New Road Map

"The rigour of relevance is sustained by virtuous circles of social energy. People do it, and do it well, because they enjoy it and see a point in it."

Chambers, 1997: 161

DOCUMENTATION

When asked to develop a strategy for the writing of this book, late October 2003, it struck me how the philosophy of organisational learning had become an integral part of PETRRA’s daily life. Ahmad Salahuddin asked me at the time whether I could already write one of the case studies, although we hadn’t discussed this previously. It took some convincing from his part, but eventually we both saw the benefits of putting the framework we were developing into practice: making the first case study a study case. "That’s the beauty of PETRRA, everything is in the air," said Salahuddin.

Funded by the UK Department for International Development (DFID), The Poverty Elimination Through Rice Research Assistance or PETRRA project approved, managed and supported 45 sub-projects between 1999 and 2004. These had a respective focus on three broad areas: pro-poor policy (6), technologies (19), and uptake and extension (20). This last group was to become the subject of this book. In November 2003, we sent a first example of the Farmseed case study, given in Chapter 18, to all the sub-projects, along with guidelines for writers.

Conveying the concept of doing extension method research, rather than extension per se was PETRRA’s first challenge. But partners were also inexperienced in analysing, reflecting and documenting processes that underpinned their innovations. People had a strong tendency to only think about technology, not about the broader context and forces shaping it.

I returned to Bangladesh and worked intensively with all project partners from January to September 2004 to help them articulate their experiences. Above all their
An innovation is a new way of doing things by applying technical, methodological or organisational knowledge. This knowledge might be acquired through extension, media, research, experience or any other source. The new idea may come from several actors, including farmers, NGOs, public and private sectors. An innovation is a change in behaviour, even a small one. For example, each person who plants a new rice variety, or buys seed from a coop for the first time, is innovating.
of ideas and their evolution. Learning by doing requires time; this meant that successes in PETRRA did not come quickly or easily. But in the end, it ensured that the majority of methods were mainstreamed into the organisations that developed them.

To mainstream methods, flexibility and ownership were key. PETRRA worked like a learning organisation, stimulating new thinking among all its members, both at management and sub-project levels, through the sharing of experiences. PETRRA linked underlying values of the learning organisation - empowerment of its members, rewards and structures fostering initiatives, and experimentation (Ayas, 1999; Stroud, 2003) - with values required to address poverty in rural development (see Box 1.2). Partners interested in experimenting with technologies and extension methods were identified competitively, a first step to ensure that sub-projects reflected these values.

In early 2000, PETRRA established the uptake forum to stimulate communicative learning between its seed sub-projects.

Box 1.2

PETRRA's Values

- **Participation** of the poor during needs assessment, technology validation and dissemination
- **Poor** households with 3-8 months' food security from own rice production, with some flexibility depending on region, actor and technology
- **Partnerships** for better access to the poor and synergy of skills
- **Gender** issues addressed in all project phases
- **Demand-led** research based on stakeholder analysis (PETRRA, 2004)

In 2002, they launched another initiative to stimulate sub-projects to interact more and with other rice-related projects in their region, leading to the formation of two focal area forums in the Northwest and Northeast. In these, several national research institutes, DAE, non-governmental organisations (NGOs), and representatives of the private-sector and farmer communities started making joint decisions to improve sourcing, packaging and delivering of information, seed and services to the poor. The prominent involvement of grassroots organisations ensures feedback from the poor to the researchers and the agricultural inputs industry. The forums were endorsed by the state minister for agriculture, and consensus was reached among members on cost-sharing after the life of PETRRA.

In early 2004, PETRRA worked with more than 12,000 farmers, of whom 40 percent were women, in more than 500 villages across 37 districts in Bangladesh (Magor and Salahuddin, 2004). During the project, the Bangladesh Agricultural University signed a ten-year memorandum of understanding with a major NGO to conduct action research with resource-poor farmers. Learning from PETRRA will also be carried forward in a new EC-funded project from 2004 to 2008.
PATHWAYS OUT OF POVERTY

Rural Bangladesh is differentiated and dynamic, both in terms of economy and farming, across all her ecosystems. Wealthier households are generally moving out of agriculture, creating space for poorer households to rent land (Orr and Adolph, 2004). Agriculture is, therefore, most important for households with less land.

Livelihood strategies are complex and there is no one pathway out of poverty. Often, farm households first try to establish their food security, which usually involves renting-in more land and investing in new rice technology (Orr and Adolph, 2004). Rice is Bangladesh's most important crop, grown over almost 75% of the cultivated land area. Improved rice technologies help families feed themselves. Evidence from PETRRA showed that significant impacts on livelihoods can be made in a very short time by introducing new, pro-poor rice technologies. This is because:

- Returns from land are higher than for micro-enterprise or wage labour, especially where rice can be grown in two seasons.
- The payback period is short, because a cropping season lasts only three months.
- Costs are low because technologies exploit under-utilised resources such as water, fallow land and household labour.

A study of interventions for healthy rice seed further confirmed the importance of simple technology in improving the livelihoods of poor households, particularly with regard to better entitlement and greater freedom of choice (Bayes, 2004).

The technologies developed, validated and fine-tuned under PETRRA were pro-poor and aimed at increasing productivity and profitability of rice farming. Those covered in the book include high-yielding varieties (HYV), health of farm-saved seed, disease management, seed drying and storage, and integrated crop and soil management. But also more complex challenges are addressed such as the pioneering of integrated rice-duck husbandry, developing an aromatic rice value chain, and a pro-poor market for mobile pumps. For each of these technologies, appropriate support mechanisms are needed to reach large numbers of farmers quickly.

During the first two decades of the Green Revolution in the 1970s and 1980s, the increase in yield came mostly from gradual replacement of low-yielding, traditional varieties with high-yielding, modern ones. But due to a lack of appropriate delivery mechanisms farmers have been slow in replacing these early modern varieties. In 2000, for example, only 12% of the Bangladeshi farmers had received information on the more recent modern varieties from public-sector extension officials. Farmers gathered little information from input providers or NGOs. Over the past 15 years, diffusion of modern varieties has mainly taken place through informal farmer-to-farmer exchange (Hossain et al., 2003). As poorer households are more active users of modern rice technology (Siddiqui et al., 1990), they will benefit most from new extension methods that specifically target this group.
PETRRA was committed to improving the well-being of ‘resource-poor’ farm households, including women, by identifying, developing and validating improved technology and service delivery methods. Close interaction with rural communities was a must. The definition of PETRRA’s target group emerged from the stakeholder analyses: ‘Households with three to eight months net food security from own rice production and where more than half of the household income is derived from own farm production’ (Orr, 2002). Any definition, however, only served as a working guideline. Households with only one to two months rice food security, and who had their major income from non-agricultural activities, also participated. Villagers have a very clear picture of the economic position of their own households. Well-being analysis or self-classification by households was introduced to identify poor households.

About one-half (49.8%) of the population in Bangladesh is still living below the poverty line, the great majority of them in rural areas, and with a preponderance of women (Duncan et al., 2002). The official national literacy rate is 50% for men and 41% for women (BBS, 2004), with averages being far lower for the poorest people. These figures reflect global trends in gender and poverty (see Box 1.3). Among the poor households in Bangladesh, women are getting increasingly involved in agriculture as their male partners often temporarily migrate for wage labour or to non-farm activities. With this in mind, reaching large numbers of farmers, particularly women, became a key criterion for PETRRA.

Poverty is more complex than a lack of income, it also involves a lack of assets, skills and opportunities, along with greater vulnerability and insecurity. For the targeted households, women’s agricultural knowledge is becoming more important to help the family make wise decisions in farming. Orr and Adolph (2004) showed that a shared vision by the husband and wife was at the heart of successful graduation out of poverty.

This book unveils the challenges and potential of working with poor farmers, men and women, not merely as producers, but also as customers, sellers, marketing agents and agricultural extensionists. The case studies reveal processes and show that working holistically with the poor, as partners, is the only way to build pathways out of poverty.
CHANGING DIRECTIONS

Diversification of service providers and innovations in extension are needed, not only in Bangladesh but across the world (Chowdhury and Gilbert, 1996; Rivera and Zijp, 2002). Continued economic liberalisation is likely to result in a growing number and greater diversity in service providers. While public sector funding is decreasing and recent discussions focus on cost-recovery and public-private partnerships (Rivera and Zijp, 2002; Anderson and Feder, 2003; Ramírez and Quarry, 2004), there is still a keen need to develop locally-adapted extension and farmer education methods that address the poor, especially women (Berdegué and Escobar, 2001; Jiggins et al., 1997; Kanji, 2003).

Since the 1980s, farmer-centred education approaches such as farmer field schools (FFS) have blown a fresh breeze over the extension landscape, highlighting the need to train farmers in their own fields through experiential learning rather than through prescriptive skills development (Röling and Wagemakers, 1998). But to reach the millions of farmers, more innovations are needed.

With this book, we present some broad principles for a new road map by illustrating the innovative complementarities that can be built between farmer education, farmer organisational development, extension and communication, and pro-poor business development.

STRUCTURE OF THE BOOK

Innovations in Rural Extension presents the evolution of methods, outlines them in contextual detail, and presents the reader with the keys to success and some of the difficulties he or she may encounter while implementing them. The book has six parts, of which this short introduction is Part I. The next four parts are each introduced by an overview chapter, followed by a number of empirical cases. The last part summarises findings and offers some fresh perspectives.

Thelma Paris and colleagues from PETRRA launch Part II on gender in agricultural extension. Poor women are eager to learn about all aspects in agriculture, not just on the roles they traditionally fulfil, and have proven to be innovators and committed extension agents. Cases are presented on women-led group extension, the family approach whereby husbands and wives receive training together, and the production of videos whereby women's knowledge and skills are presented alongside scientific information. The latter project won a prestigious international award for effective communication.

Part III on learning with rural communities is introduced by Jeffery Bentley and Paul Van Mele. They discuss the specific role farmer-to-farmer extension has in learning about local knowledge and developing mass media communication messages. A first case 'Watch and Learn' shows that a video, made by a multidisciplinary team and
involving peers, has a higher impact on rural women’s seed health practices compared with farmer-to-farmer extension. The next case ‘Village Soil Fertility Maps’ gives impressive evidence of how within a short time and with limited financial resources, soil fertility management was improved in more than 200 villages by combining principles of soil fertility mapping, participatory research and farmer-to-farmer extension. The last two cases in this part build on old forms of reaching rural audiences, namely going to local markets or other public places and using folk songs. They have been revived into new agricultural extension methods called Going Public and picture songs, the latter bringing entertainment-education to rural women.

Part IV on enterprise webs is introduced by Noel Magor, who stresses that complex linkages are essential for poor farmers to adopt certain technologies. It places extension in a broader context and looks at rural development from a business perspective. Tools such as enterprise webs can help organisations to analyse the weakest links of an enterprise and to make decisions about where vertical integration would be better than strategic partnerships or vice versa. Cases are presented on establishing integrated rice-duck farming, pro-poor markets for mobile pumps and a value chain for aromatic rice.

In Part V, Solveig Danielsen, M. K. Bashar and Mark Holderness investigate the emergence of pro-poor rice seed systems in Bangladesh. The first two cases illustrate significant changes in mindset among senior scientists of the Bangladesh Rice Research Institute in validating technologies with NGOs and poor farmers, and in channelling multiple partnerships into a rice seed network. The last three cases shed light on the experiences from the three diverse NGOs in training farmers as seed producers and involving them in extension and marketing efforts.

Part VI puts all experiences in a broader context, draws on transaction cost theory, and targets donors, policy makers and academics. The bulk of the book, however, merges quantitative impact assessments with more qualitative process analysis, and is written in a simple style to offer ‘relaxed reading’ for development workers, service providers and university students. We want others to enjoy reading what we have enjoyed doing.

REFERENCES

SUMMARY

Over 18 months, the Women-to-Women Seed Health Video sub-project built capacity in national organisations, developed quality videos, and assessed their effectiveness. We formed two video teams based on organisational and individuals' comparative strengths and motivation. To break down communication and adoption barriers, we researched local knowledge, and involved rural women in developing and validating both the technologies and the video scripts. Video proved successful to catalyse local experimentation on a large scale. We ensured widespread dissemination of the videos by stimulating stakeholder ownership and pride in the project. In March 2004, the project received an award for effective communication from the prestigious International Visual Communication Association in London. The intricacies of the video development process are described in this chapter, whereas its impact, as compared to farmer-to-farmer extension, is presented in Chapter 7 called 'Watch and Learn'.
ACTORS AND NETWORKS

An overview of the actors is given in Table 5.1. CABI Bioscience is the scientific division of CAB International (CABI) with Centres across the world, implementing more than 100 projects on sustainable agriculture. CABI helped in merging local and scientific knowledge and in ensuring participatory processes.

Countrywise Communication, a UK-based private company specialising in video and multimedia training for agriculture and rural development, trained a local team in digital video production during two two-week sessions in January and March 2003. The Rural Development Academy (RDA) at Bogra has a mandate for training and action research. They coordinated the project locally, including the video production and impact study.

TMSS, a national non-government organisation (NGO) with headquarters in Bogra, works with and for women in rural development. It addresses income-generating activities, agriculture, credit, agroforestry, fisheries and livestock among a number of other programmes.

Apart from CABI Bioscience having worked with RDA since 2000 in the Seed Health Improvement sub-project (SHIP), none of the other partners had previously worked with one another. Trained by CABI Bioscience, RDA project staff had already acquired a solid understanding of participatory technology development.

Both SHIP and this project are sub-projects of the DFID-funded Poverty Elimination Through Rice Research Assistance (PETRRA) project. When the

<table>
<thead>
<tr>
<th>PROCESS VARIABLES</th>
<th>CABI BIOSCIENCE</th>
<th>RDA</th>
<th>TMSS</th>
<th>COUNTRYWISE COMMUNICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of organisation</td>
<td>Inter-governmental</td>
<td>Governmental</td>
<td>Non-governmental</td>
<td>Private sector</td>
</tr>
<tr>
<td>Expertise</td>
<td>Agricultural knowledge and information systems</td>
<td>Rural development</td>
<td>Women in development</td>
<td>Communication in agriculture and rural development</td>
</tr>
<tr>
<td>Input in project</td>
<td>Access funds; project coordination; participatory methods, script research and impact assessment</td>
<td>Audio-visual expertise; relationship with villagers with whom film was produced; local coordination, field research and video production</td>
<td>Gender expertise; interview skills; field research, video production and Bangla voice-over</td>
<td>Capacity building on digital video production; English voice-over</td>
</tr>
<tr>
<td>Motivation to get involved in project</td>
<td>To improve rural women's access to information; to diversify examples on how scientific and local knowledge can be integrated</td>
<td>To strengthen audio-visual unit as resource centre; to learn by doing through video production</td>
<td>To learn about the potential of video to reach rural women</td>
<td>To get involved in a project that measures the efficiency and impact of video as a communication tool</td>
</tr>
</tbody>
</table>
Bringing Science to Life

by A. K. M. Zakaria

Under another PETRRA sub-project, Paul from CABI and myself initiated participatory technology development activities in Maria village, Bogra. For me it was a new experience, and processes that build on local knowledge were gradually attracting me. Every day I was experiencing new avenues of farmers' empowerment and I felt changes within me. I could clearly see the right way to work with farmers. One day, while we were holding a village exhibition of locally-made drying tables for mid term evaluation, I wondered how a few activities could have had such an extremely valuable impact on women and stimulated their empowerment. Later that afternoon, we took the exhibition material to the crossroads of the village to look at the reaction of passers-by. At one moment, I told Paul that we should do something for sustaining and disseminating the idea. Paul smiled. There were a few boys with bicycles and all of a sudden Paul took one of the bicycles from a boy and challenged them for a race. Zooming away, he called out: "My friend, let's do it..." I now understand that this was the call for our video project journey.

EVO LUTIO N O F T H E M ETH OD

The communication gap between research, extension and farmers has been under serious scrutiny over the past decades, resulting in a range of alternative approaches based on community participation in both research and extension, such as farmer field schools and local agricultural research committees (Braun et al., 2000). However, scaling up face-to-face extension is costly and the number of people reached is often limited, calling for a closer look at mass media (Snapp and Heong, 2003).

Changing farmers' behaviour in rice pest management was possible in Vietnam through radio dramas, although the message was limited to one simple rule-of-thumb: do not spray insecticides for leaf folder control in the first 40 days after sowing (Heong et al., 1998). Video has been used extensively in rural development (Norrish, 1998; Coldevin, 2000; Bessette, 2001), even including topics such as soil fertility (Protz, 1998). But it is still under-explored as a means of merging scientific with local knowledge to get plant health messages across to the rural community. Based on discussions held over the past years with K. L. Heong from the International Rice Research Institute (IRRI) and Jeffery Bentley, an agricultural anthropologist and CABI associate, the senior author explored the idea of incorporating discovery learning
principles into mass media (TV) or small media (video).
The opportunity to test this arose when PETRRA launched a new call for sub-projects in 2002. Concept notes had to focus on women and uptake of post-harvest innovations. As CABI and RDA had good experiences working under SHIP, this provided an ideal opportunity to test the effectiveness of video as a communication tool to reach rural women (see Box 5.1).

As we developed our concept note for a women-to-women extension project, we realised that the team had only one woman. The project needed women colleagues e.g. for preparing village women for video shots, attaching the microphone to saris, interviewing etc. Mr. Zakaria suggested collaborating with the national women's NGO, TMSS. In August 2002, the proposal was further discussed with Countrywise Communication and submitted to PETRRA, who approved it by November 2002.

PARTICIPATORY VIDEO PRODUCTION METHOD

Develop a video team with complementary skills

We selected team members with complementary skills: familiarity of working with women in the village, interview skills, listening and talking skills, having a photographer's eye, subject knowledge, computer skills, among others. Two video teams were trained to stimulate competitiveness between teams. Each consisted of two men and two women which added to the diversity, richness and hence quality of the videos.

The teams received training in video production techniques from Josephine Rodgers during two, two-week sessions. Each team member received training in all aspects of video production, so they were soon all familiar with the technical tasks and terms. At the house of Rina, one of the team members, her husband was complaining: "Whenever she watches TV, spontaneously she utters 'Mid-shot, long-shot, close-up, zooming in...'. Watching TV nowadays is just not the same anymore."

By the end of the training each had found their niche, or preferred role. Kamrul, the RDA computer expert became a skilled editor: "Before I was blind, now I see with new eyes. Our thinking power has increased a lot."

Conduct script research

Assessing what people know and their attitudes toward certain practices is a first step in developing an adult learning programme. CABI Bioscience trained staff in the development of knowledge, attitude and practice (KAP) statements about seed health and post-harvest innovations. We agreed to produce four short training videos on seed
spots and sorting, seed flotation, drying and storage technologies (Table 5.2). Each would be a stand-alone video that could be used like a module in a training course.

All statements were refined several times for relevance and clarity with about 25 women in 3 different locations in Bogra. Basanti from TMSS got back from a field visit one day saying: “I had a very difficult time trying to explain to women in the village about seed moisture content. We need to adjust that statement as women talk in terms of seed dryness, not seed moisture.” Some statements dealing with seed pathogens or unknown technologies such as manual seed sorting were supported by live samples and short demonstrations.

Once the KAP statements were completed, a benchmark survey in one village with one hundred female smallholders helped us determine the issues to address in the videos. By improving women’s understanding of underlying principles (the life of pathogens and storage insects like rice moths, evaporation and ventilation during seed drying, air tightness of storage containers), we anticipated that women would be motivated to innovate and develop their own solutions, thus catalysing local experimentation based on global principles. Impact on learning is presented in Chapter 7.

All team members experienced the importance of identifying and involving both local innovators and technical experts in the early stages of script writing to ensure relevance, appropriateness and scientific soundness of the topics addressed. “We improved our skills of problem identification with farmers, both men and women, much better as we now have to pay more attention to details,” said Parvin, who had already worked for three years in the Seed Health Improvement sub-project. Mojaherul Haque (Babu) added: “We can learn so many things from village women. They have many good ideas.”

Table 5.2 Post-harvest interventions addressed in videos

<table>
<thead>
<tr>
<th>Brief description of technology</th>
<th>SEED SORTING</th>
<th>SEED FLOTATION</th>
<th>DRYING</th>
<th>STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manually remove diseased seed</td>
<td>Add salt or urea to a bucket of water until an egg floats; drop rice seed in the water and remove the bad ones that will float to the surface</td>
<td>Make a bamboo table or bench for drying rice; it can be quickly moved indoors in case of rain</td>
<td>Paint an earthen pot; fill it with rice seed and do not leave a dead air space; add leaves of neem or bishkatali and seal the pot. Store pot above the ground</td>
<td></td>
</tr>
<tr>
<td>Scientific principles; technology introduced by outsiders</td>
<td>Small modification of existing practice</td>
<td>Tables made through participatory technology development</td>
<td>Scientific and local knowledge and practice</td>
<td></td>
</tr>
</tbody>
</table>

Source: Adapted from Van Mele et al. (Chapter 7).
Interview innovators and respected individuals

We identified women innovators who had good presentation skills. As some male farmers are selling cleaned seed and this was perceived as an important incentive to adopt seed health practices, we also interviewed a few men. Preparing the women for being interviewed such as briefing, positioning for interview, attaching the microphone is best done by a woman. Besides, having women rather than men interview village women makes them feel more relaxed.

We also learnt that women in the village attribute higher credibility to the video when a scientist is also interviewed side by side with the local innovators.

Illustrate improved household decision-making

As male farmers have been equally involved in some of the post-harvest training sessions, we paid equal attention to showing activities where the whole household is engaged, such as manual seed sorting or developing seed drying tables. When the videos are shown in the village it is hard to keep men from participating. The video is more acceptable to the whole community if men and women appear on camera.

Make clear and gender-sensitive voice-overs

The men on the video teams realised the importance of having a woman in their team do the interviews and the voice-overs, to reduce the communication gap with the target audience.

Validate and refine rough edits

Five women from Magurgary village, who previously had not been exposed to any training, were invited for reviewing a first rough edit of the videos. We learnt that major improvements could be made to the script. The women first politely said they would immediately try out these new techniques. However, when we asked them how the videos could be improved, they spontaneously made a major contribution: a scene had to be included whereby one woman buys clean seed from another one while explaining how this improves her yield. From now on, the team would consider including role-plays in their future scripts.

The women also mentioned that the messages were convincing, because they could see that other village women had also tried these new techniques and achieved good results. Besides, one of them said the techniques could easily be tested for their validity and that she
would get this message easily across to her husband. The women of Magurgary gave more credibility to things on video than to hearing people talk in real life.

During the refreshers’ training course and before the videos were finished, we displayed two of the videos for about 300 people in Nagar Tarun during Independence Day on March 26th, 2003 (see photo). The evening before, the video show had been announced by ‘miking’, where a rickshaw driver cycles through the village and announces messages over a microphone and amplifier. The local youth club organised the whole event.

Show and discuss videos with village women

Women said that the best time for showing videos in the village was at about 15.00 hours, after they had fed their families. They also said that it was important to see all the different aspects of seed health combined, not just as individual topics and that the videos should refer to one another. This advice was followed, so that each video addresses a specific topic in relation to the other post-harvest interventions.

Each training video lasts only about 6-8 minutes. Making each one separately allows each programme to be shown at relevant times in the season, based on local needs. An entire show and group discussion can easily be held in an hour. In some cases, women asked to see the videos a second time. After each topic, our female project staff led a group discussion.

Bangladeshi villages typically consist of four to six paras or hamlets (see Appendix). Within each para, we invited small groups of 20-25 poor women to attend the video group learning sessions, held in the courtyard of one of the women. Since men and other interested women also showed up, we decided that in future the target group should get seats close to the screen.

For research purposes, we rented a video player, TV and generator so that the team could easily show the programmes in all paras. How the videos will be used in future is discussed next.

Assess impact and revisit communication strategy

Each of the videos had a different response from the community. The seed drying and storage programmes were especially popular. The impact survey is discussed in Chapter 7. Based on women’s feedback during the shows, we think that seed sorting needs supplementary training alongside the video.
Nowadays, nearly all villages have video players and TVs available for rental. NGOs such as CARE are using the videos in their training programmes.

The government extension service (DAE) under the Ministry of Agriculture has well equipped audiovisual units at the district level, whereas eleven agricultural information offices across the country make use of mobile cinema vans to get messages across. Both could be used to further disseminate the videos.

KEYS FOR SUCCESS

- Teamwork and a shared feeling of ownership and pride in the project. All partners are motivated to promote the videos even after the life of the project.
- PETRRA, through a national communication fair and other forums, helped to announce the videos at the national level.
- Creative thinking and interaction with rural women.
- Experiences and innovations of resource-poor women fully incorporated to present an honest account. Both benefits and drawbacks of each technology are presented.
- New insights triggered by discovery and adult learning.
- At the end of every story, women are challenged to try out the new technology.

DIFFICULTIES, RISKS AND ASSUMPTIONS

Camera sensitivity was one of the difficulties in taking shots and interviews. "Nearly all the women and men interviewed speak very well, but whenever they face a camera, they give opposite statements," says Basanti. To solve this problem, 'Practice makes perfect' was followed. Some trial shooting was made without tape and by cheering them up, the problem dissolved. Likewise, some women started talking in an artificial lingua in front of the camera. To avoid this, topics were discussed in their own words to make them free and to convince them that natural is better.

Generally, women did not want to appear in front of the camera without applying makeup, putting on their best cloths etc., which sometimes took a long time. As the filming had to be as natural as possible, they needed to be convinced to wear their work clothes.

Some of those not involved in the process tried to disturb the filming. They told the village women that showing their faces in a video programme would be reason for an unforgivable sin; that it is not allowed in our religion etc. These people were taken aside and reassured that they would also be in the film. Accordingly, in one afternoon the camera crew filmed them. They looked very happy; little did they know that most of the shots were taken without film.
Sometimes a huge crowd, especially children, made so much noise that recording interviews became impossible. 'Chocolate therapy', handing out sweets to keep them quiet, was a good solution.

Although women were previously informed about the timing of the shooting, they could not always stick to the schedule, because of their high workload. In those cases, the filming had to be cancelled and gear packed up. Often other women could be interviewed or new shots taken so that the visit to the village was never in vain.

The selection and arrangement of the location for shooting was not always an easy task. Sometimes, waiting for the right season to film was not an option. "Creating artificial rain on a sunny day, by sprinkling water from a bucket on the rooftop, remains a memorable event for film crew and village participants," says Babu, one of the video team members from RDA.

Filming the different steps involved in a technology like seed flotation is relatively straightforward. It gets more difficult when showing how spotted (diseased) seed develop in poor seedlings, how the process of evaporation works, or how air humidity can 'migrate' through an earthen pot in other ways than via the lid.

Traditionally, women in Bogra dry their seed on the floor, even during the rainy season. Visualising moisture absorption by seed that are being dried on the earthen floor was difficult, but creative thinking by the video team made the breakthrough. Now, a farmer who would agree to give away a comic shot had to be found. Showing his wet longi after having sat on the moist ground would give a powerful and funny message that people would talk about and remember. As the team knew the people in the village, one of the first potential candidates, Hatem, was approached. He immediately agreed to volunteer: "If I can contribute to the project in any way, it doesn't matter whether people will laugh with me".

The risk of any video project is that the video programmes, once produced, remain on the shelf after the project has finished. With the strong feeling of ownership by all partners, it is anticipated that in this case the reverse will happen. Signs are already apparent that both the videos and acquired skills are being marketed extensively. This will be discussed in Part III on learning with rural communities.

SCALING UP

Increasing demand

During a communication fair, organised in...
Dhaka by PETRRA in September 2003, more than 300 copies of the videos were distributed. "The demand was extremely high and most people even wanted to pay money for it. As it was an output of the project we didn’t want to charge anybody, but it filled us with pride," says Zakaria.

CARE Bangladesh requested RDA for at least five more videos to play in their project areas of Gaibandha, Naogoan and Dinajpur, mentioning: "We are regularly making use of these videos in our stakeholder workshops and in the meantime we got huge response from the villagers and local leaders." Helen Keller International is using the videos in their programme in Nepal. "Although our programme is based on vegetable production, it is of good use as the principles for post-harvest of rice and vegetable seeds are more or less the same," said Mr. Zaman, their country director.

By May 2004, about 700 copies (both in Bangla and English) had been distributed.

Developing own initiatives
Apart from the four videos developed by the project, the team is now working on a fifth video about rogueing, which is a pre-harvest practice to improve seed health. Also a video was made from a 50-minute traditional song that was specifically written around seed health issues (see also Chapter 10).

Promoting video expertise
The training and feedback during different events boosted the team's confidence and video communication expertise is now offered to various projects and organisations working in the region.

Addressing the nation
Based on feedback from women in the village (see Box 5.2), one of the authors (Zakaria) took courage to approach a national cable TV station. One month later, the programmes started being broadcasted by Channel-i throughout the country. In May 2004, the programmes featured on ATN Bangla, another national cable TV station. However, cable TV is not available in rural areas.

> "Both me and my husband enjoyed the video shows and we were the first to make a drying table in our village," Aklima claims. "Many women came to our house to see the table."

Aklima turns to Munni, one of the women of the video team, saying: "If you could put the video on TV, it would be very useful for the farmers all over the country." A great idea was born.

Other spin-offs
After seeing the success of this innovative project, CABI started adding video-
Bringing Science to Life

centred learning to its basket of farmer training methods in projects across the world. Various other results came from the project (Table 5.3).

Spreading the word internationally
In October 2003, the video project featured as the lead story in CABI Bio News, sent to over 3,000 stakeholders including donors. It was also hosted on CABI Bioscience's website (www.cabi-bioscience.org), which has around 150 visitors per day.

Table 5.3 Results of the Women-to-Women Seed Health Video sub-project

<table>
<thead>
<tr>
<th>RESULTS</th>
<th>CABI BIO SCIENCE</th>
<th>RDA</th>
<th>TMSS</th>
<th>COUNTRYWISE COMMUNICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced interest in project outputs</td>
<td>Using videos as participatory training tool; videos are a good resource for CABI's Good Seed Initiative; raising awareness towards donors</td>
<td>Acting as video service provider; providing training on participatory video production in research and development.</td>
<td>Using videos as training tool in villages; using new skills and links to develop other videos</td>
<td>Broadening customer base; using videos for marketing purposes</td>
</tr>
<tr>
<td>Enhanced interest in working with project partners</td>
<td>CABI started working with RDA on a new project called the Plant Health Initiative; CABI is involving Countrywise in developing new project proposals</td>
<td>RDA is promoting its work with CABI to visitors; for future video productions that involve women, TMSS will be asked to partner</td>
<td>TMSS anticipates to produce videos with RDA on some of their own programmes (credit, agriculture, fisheries, poultry, community hospitals and others)</td>
<td>Countrywise is exploring new collaboration with CABI management</td>
</tr>
</tbody>
</table>

Countrywise Communication showed the video in the global partnerships pavilion at the Royal Agricultural Show 2003. At least 100 decision-makers from embassies, government agencies and the private sector saw them and were impressed by the work.

OneWorld TV incorporated an overview of the project with short clips of the video programmes on their website (tv.oneworld.net).

Award-winning
On 26 March 2004, exactly one year after the first village video show was organised as a try-out, the project received a prestigious award for effective communication from the International Visual Communications Association (IVCA), one of the main organisations responsible for promoting the non-broadcast video industry in the world. This award was given to us during an official ceremony in London with the following comments from the judges: "Simplicity and inclusiveness make this an efficient and relevant piece of communication. Support documentation for the project was well produced. The project showed a good understanding of simple objectives effectively portrayed."
CONCLUSION

By involving rural women in developing and validating the videos and the technologies shown on them, communication and adoption barriers are reduced (see Chapter 7). Participatory video helps to build bridges between local and scientific knowledge, and should be further explored for the presentation of other technologies.

The stakeholders were all proud of their work on the videos, which led to fast and widespread scaling up, but follow-up is needed to get the videos fully established within the system of national, regional and local service providers.

REFERENCES

SUMMARY

To improve seed quality on-farm, four videos were developed with village women on seed sorting, flotation, drying and storage. The video production is described in Chapter 5 of this volume. In this chapter, the effectiveness and impact of this adult education approach is assessed. Besides being more cost-effective than farmer-to-farmer extension, video has the power to better explain underlying biological or physical processes and allows learning about local innovations. The seed drying and storage programmes created new knowledge on evaporation and porosity and presented it alongside local innovations, resulting in a high level of experimentation. After seeing the videos about 40% of the women changed their seed drying practices. The use of botanicals such as neem, bishkatali and tobacco leaves in storage containers increased from 5 to 75% with video and from 25 to 55% with farmer-to-farmer extension. Presenting people with a wide range of new ideas stimulates experimentation. After watching the videos, 85% of the women tried out different storage containers, mainly smaller and more airtight ones. Most of the women already practiced seed flotation in some form, but after watching the video, a few women added salt or urea to the water, which helps remove more bad seed. Seed sorting, going through it one grain at a time and removing all spotted and discoloured seed, was not widely adopted. But those who watched the videos learnt about seed borne diseases. Seed sorting demands motor skill, the way typing or driving does. For technologies that rely on motor skills, video training sessions must be complemented by hands-on training.
ACTORS AND NETWORKS

CABI Bioscience is the scientific division of CAB International. Under the Women-to-Women Seed Health Video sub-project, which started in November 2002, CABI helped in assessing local knowledge, developing an impact assessment survey, and ensuring farmer participation in the development of the technologies and the script (see Box 7.1).

To break down communication and adoption barriers, we learnt about local knowledge, and involved rural women in developing and validating both the technologies and the videos. Adoption of technologies was higher with women who saw the videos compared to face-to-face extension. See also Chapter 5 to learn about the video production process.

The Rural Development Academy (RDA) at Bogra coordinated the project locally, including the video production and impact study. RDA and CABI had a mutual understanding and shared vision as a result of collaboration under PETRRA since 2001.

TMSS is a national NGO that focuses entirely on women in rural development. Two of their staff, Rina Nasrin and Basanti Chakroborty, helped film the videos and do the impact surveys.

In May 2004, additional qualitative data were gathered by Dr. Jeffery Bentley, agricultural anthropologist, during two field visits, with help from Md. Mojaherul "Babu" Haque from RDA and Laila Arzumand Banu.

THE VIDEO EDUCATION METHOD

On four award-winning videos, village women show how to sort, float, dry and store seed (Van Mele and Zakaria, 2003). Each video covers a specific topic (Table 7.1) and lasts only about 6-8 minutes. In the village, an entire show and group discussion can be easily conducted within an hour.

We will describe how the same four technologies were conveyed using different methods in 11 villages in Bogra district:

1. Village video show followed by discussion.
2. Farmer-to-farmer extension.
3. Village video show followed by farmer-to-farmer extension.

Video plus discussion

In Husnabad village, 100 poor women were identified through well-being analysis and their knowledge, attitudes and practices assessed prior to the training. We
Table 7.1 Post-harvest innovations shown in video programmes

<table>
<thead>
<tr>
<th>Brief description of technology</th>
<th>SEED SORTING</th>
<th>SEED FLOTATION</th>
<th>DRYING</th>
<th>STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Manually remove diseased seed</td>
<td>Add salt or urea to a bucket of water until an egg floats; drop rice seed in the water and remove the bad ones that will float to the surface</td>
<td>Make a bamboo table or bench for drying rice; it can be quickly moved indoors in case of rain</td>
<td>Paint an earthen pot; fill it with rice seed and do not leave a dead air space; add leaves of neem or bishkatali; seal pot and place it off the ground</td>
</tr>
<tr>
<td>Learning messages</td>
<td>Spotted and discoloured seeds are unhealthy; these cannot be removed by winnowing or seed flotation; seed sorting improves yield</td>
<td>Winnowing does not remove all insect-damaged and partially filled seed</td>
<td>Seeds absorb moisture from soil; wind helps in drying seed; a drying table has many other uses than just drying rice seed</td>
<td>Pots absorb moisture, which paint prevents; completely filled pots are dryer than half empty ones; some kinds of leaves repel storage insects</td>
</tr>
<tr>
<td>Local knowledge and innovations</td>
<td>Women have little knowledge about seed-borne pathogens</td>
<td>Women already soak seed in water prior to sowing; flotation with salt or urea is a small modification of existing practice</td>
<td>Drying tables were designed with the full participation of local women and men</td>
<td>Traditionally some people sealed pores of earthen pots with used oil; only a few people use botanicals</td>
</tr>
</tbody>
</table>

divided them in small groups of 20-25 women and invited them to attend the video group learning sessions, held in one of their courtyards.

Farmer-to-farmer

In Telihara village, 100 poor households, also identified through well-being analysis, were trained by 30 families who had received training on seed health for the last four years, including some who had helped make the videos. These farmer trainers came from Maria village, in another union called Amrool.

Video plus farmer-to-farmer

In Narchi and eight other villages in Amrool union - including Maria village, where the techniques were invented or validated by farmers working with researchers - we tried a combination of both approaches. Large groups of people watched the videos followed by demonstrations by three male farmer trainers from Maria village.

Impact assessment

In Narchi village, we interviewed a small sample of the community. In Husnabad and Telihara villages, we organised a quantitative survey to assess knowledge, attitude and practices before and after the intervention.
Although the videos target women, they generally bring their children along, while men gather at the back out of curiosity.

Each of the approaches has given us new insights into strategies for adult education, i.e. for finding the best and cheapest way to change farmers' behaviour and decision-making capacities.

Learning

Almost everyone who saw the videos retained most of the key concepts. When we asked people to tell us what they had learnt in the video, they could all describe something. At first, one woman said she hadn't learnt anything, because she had watched through the window of the packed schoolroom, but then she reflected a minute and recalled learning about seed flotation. One man hesitated before answering, and then in a neat reversal of gender roles, his wife jumped in and answered for him; she remembered a great deal from the video.

In some cases, people learnt more from videos than from farmer-to-farmer extension (Table 7.2). For example most people who watched the video learnt that winnowing does not remove all insect damaged seed, but only few people who received farmer-to-farmer training remembered this. Women's attitudes towards certain practices such as seed sorting also improved more after they saw the video than in farmer-to-farmer training.

Learning is all well and good, but our real question was if the new ideas helped the women to improve their post-harvest practices.

Factors enhancing adoption of technologies are summarised in Box 7.2. The level of adoption was
of the following order: seed sorting < seed flotation < seed drying < seed storing. We will now discuss each of these in the light of both the video and farmer-to-farmer extension.

Sorting seed is tedious

The local people already do a fair amount of sorting and cleaning seed before they put it up, but few understood that we meant ‘sorting’ to mean going through it one grain at a time and removing all spotted and discoloured seed. To clarify what we meant by seed sorting during the survey, we used a small sample and demonstrated it to the women before asking the question. After seeing the videos, all agreed this

Table 7.2 Changes in knowledge and attitude of women with farmer-to-farmer versus video-supported extension (percentage of correct answers)

<table>
<thead>
<tr>
<th>SURVEY QUESTION</th>
<th>TARGET ANSWER</th>
<th>FARMER-TO-FARMER (N = 100)</th>
<th>VIDEO (N = 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Before</td>
<td>After</td>
</tr>
<tr>
<td>Example where people learnt more with farmer-to-farmer extension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind can dry seed?</td>
<td>Yes</td>
<td>8</td>
<td>27</td>
</tr>
<tr>
<td>Example where people learnt more with videos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winnowing removes all seed with holes? (i.e. insect damaged seed)</td>
<td>No</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>Manual seed sorting is tedious?¹</td>
<td>No</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Manual seed sorting takes too much time?</td>
<td>No</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Seed placed on earthen floor can absorb water?</td>
<td>Yes</td>
<td>42</td>
<td>34</td>
</tr>
<tr>
<td>Example where people learnt about the same with each extension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do you know what causes holes in seed?</td>
<td>Yes²</td>
<td>88</td>
<td>97</td>
</tr>
<tr>
<td>Do you know what causes spots in seed?</td>
<td>Yes²</td>
<td>47</td>
<td>70</td>
</tr>
<tr>
<td>Winnowing removes all seed with spots?</td>
<td>No</td>
<td>91</td>
<td>99</td>
</tr>
<tr>
<td>Air can pass through earthen pot in other ways than via lid?</td>
<td>Yes</td>
<td>27</td>
<td>50</td>
</tr>
<tr>
<td>Keeping air from passing through my container is difficult?</td>
<td>No</td>
<td>78</td>
<td>96</td>
</tr>
</tbody>
</table>

¹Actually it is tedious. The question is intended to ask if people find sorting too tedious to do, in spite of its benefits.
²These were not yes-&-no questions on the questionnaire, but we have simplified them here.
practice would increase yield, and only half still stuck to their opinion that it was too tedious and time-consuming. The video proved to be a better means of changing attitude than the farmer-to-farmer extension. Nevertheless, for reasons we will see below hardly any women actually started sorting.

Sorting seed is needed

Research in Bangladesh by PETRRA’s Seed Health Improvement sub-project (SHIP) showed yield increases of 10-15% after proper seed sorting. But showing this technology through either video or farmer-to-farmer extension did not convince farmers to sort their seed. Because it takes a lot of time to sort seed, people will probably not sort it grain by grain, but may take the time to pick out the seed with the most conspicuous spots (Table 7.3).

Golenur Begum, one of the women from Narchi, said that sorting thirty kg of seed took half a day with two people. However, she was probably doing a rough-&-ready seed sorting, and not exactly the seed sorting that the SHIP project recommends, because tests under SHIP indicate that a newly trained person requires up to eight hours to properly sort just one kg of seed, and as much as two hours after three seasons of training. Learning to quickly identify spots takes a keen eye and practice. Therefore adoption is higher if women watch the video and then have hands-on training, as was the case in Narchi village where at least two of the nine women interviewed actually went to some effort to manually sort their seed. However, Narchi village is also influenced by other seed health activities such as village contests organised by RDA and the Union Parishad in Amrool union. As confounding activities influences impact assessment in extension research, we will mainly draw lessons from work in Husnabad and Telihara villages, where no SHIP project activities took place.

Seed flotation

Of the 200 women interviewed in Husnabad and Telihara, more than 50% said they practiced seed flotation, but only four actually added salt to the water to float out more seed. Poor women think it is a waste to add salt, as they often cannot even afford to have salt with their meal. During the semi-formal interview a couple of months later, few people said they did seed flotation, but several women described it in detail, even mentioning putting salt in the water until an egg will float in it, so that the water will float out more of the partially filled and insect damaged seed. They said they would do it when they planted the rice they have stored now. This would indeed make sense, since most women already soak the seed just before planting it, to trigger pre-germination.
Table 7.3 Post-harvest innovations and their scaling-up potential

<table>
<thead>
<tr>
<th>Required capacity building</th>
<th>SEED SORTING</th>
<th>SEED FLOTATION</th>
<th>DRYING</th>
<th>STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial training following the video session is needed to teach motor and observation skills to recognise the spots</td>
<td>Slight, mainly the concept that adding salt to water floats out more of the bad seed</td>
<td>Idea that seed absorbs moisture from soil and some simple skills for building tables to help dry seed in the rainy season</td>
<td>Several related ideas on porosity and keeping storage pots dryer e.g. painting them</td>
<td></td>
</tr>
<tr>
<td>Monetary cost</td>
<td>None</td>
<td>Only salt or urea need to be bought</td>
<td>Low to high; a light drying table costs on average Tk 60 (US$ 1.1), and a heavy bamboo one about Tk 300 (US$ 5.3)</td>
<td>Low to high; a small pot of paint costs Tk 12, and a plastic drum costs around Tk 300; insecticidal leaves cost nothing</td>
</tr>
<tr>
<td>Opportunity cost</td>
<td>High; a lot of time is required to properly sort seed</td>
<td>Low; activity can be easily done prior to soaking seed for pre-germination</td>
<td>Moderate; materials need to be collected and time is spent making the table</td>
<td>Low to moderate; used cooking oil and botanicals are readily available; paint or drum need to be purchased</td>
</tr>
<tr>
<td>Perceived need</td>
<td>Moderate; impact will mainly be high when seed quality is very poor</td>
<td>Low; women prevent storage pest outbreaks by improving drying and storage, and already remove bad seed when they soak them to pre-germinate</td>
<td>High; since irrigated rice was introduced, seed drying in the rainy season is a new and urgent need</td>
<td>High; women know that moist seed is more heavily attacked by insects, and women already spend much effort re-drying their seed monthly</td>
</tr>
<tr>
<td>Adoption</td>
<td>Low and partial adoption, i.e. only heavily infested seeds are removed</td>
<td>Moderate</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Scaling-up potential</td>
<td>In areas with known poor quality seed</td>
<td>Throughout the country</td>
<td>Throughout the country wherever irrigated dry season or boro rice is grown</td>
<td>Throughout the country; more local innovations could be included</td>
</tr>
</tbody>
</table>

1 I.e. the household’s other options for spending the money and time needed to invest in this technology.

When we asked ‘Do you know what causes holes in the seed?’ people said: insects, poor seed drying and air in the container. People are well aware that there will be less insect damage if the seed is dried properly and the container is airtight. Their understanding comes from experience rather than from learning the underlying principles of insect ecology. No wonder women adopted drying and storage...
Spot the difference. Video can easily show how a technology is used in its natural environment (left). The function of the drying table is entirely masked during demonstrations when cluttered with displays of other materials (right).

People experiment more readily when they are provided with information that helps them understand the underlying principles of that technology.

Video gives you the guarantee that the learning content you intend to get across will be conveyed in the same way over and over. When farmers have to train others on several topics, as in this case, you lose control about what will be taught. Although the farmer-extensionists showed several seed drying tables, they were mostly covered up, used to display other materials, so farmers could not see what they were for. Similar observations were made when the tables were used in Going Public sessions (see Chapter 9 by Nash and Van Mele).

Box 7.3 Igniting Experimentation

Drying is a new need

In the past 30 years, Bangladesh has grown much more irrigated rice during the dry or **boro** season (November - May). This means that there was little existing technology for drying rice in the wet season. "During the rainy season, after the rain is over, we will dry. But if it continues to rain, there is nothing to do but put our seeds on the floor and stir them with our legs, to remove excess moisture," sighs Kancham, one of the women in Husnabad village who has not seen the video yet.

Before seeing the videos, 43% of the women interviewed agreed to the statement that 'seeds placed on the earthen floor can absorb water', but that went up to 79% after they watched the video. Fifteen had made a seed drying table and 28 dried on thatch or jute bags instead of drying directly on the ground. We were surprised to observe no changes in the village where farmer-to-farmer extension had taken place. The education approach clearly influences the extent people start experimenting (see Box 7.3).

Drying is a new need

In the past 30 years, Bangladesh has grown much more irrigated rice during the dry or **boro** season (November - May). This means that there was little existing technology for drying rice in the wet season. "During the rainy season, after the rain is over, we will dry. But if it continues to rain, there is nothing to do but put our seeds on the floor and stir them with our legs, to remove excess moisture," sighs Kancham, one of the women in Husnabad village who has not seen the video yet.

Before seeing the videos, 43% of the women interviewed agreed to the statement that 'seeds placed on the earthen floor can absorb water', but that went up to 79% after they watched the video. Fifteen had made a seed drying table and 28 dried on thatch or jute bags instead of drying directly on the ground. We were surprised to observe no changes in the village where farmer-to-farmer extension had taken place. The education approach clearly influences the extent people start experimenting (see Box 7.3).

Storing seed airtight is important

After watching the video, Rabeya from Husnabad village speaks out in the group: "Every time I dry my seed very well and keep it in an earthen pot, but after I open

prevent insect damage more readily than floating out insect damaged seed with salt water: proper drying is easier to do, it is consistent with what they already do and know, and if done well may save them the tedium of drying seed each month.
Saiphal Islam inspects his drum filled with rice seed. Note the blue pot, neatly sealed with clay and covered with a sheet of clear plastic. After learning about seed health technologies, Mr. Islam decided to try painting an earthen pot to store rice seed. He will carefully plant the seed from the pot and from the drum, and compare the yield from each one.

the pot some months later I always find mouldy seeds and insects. Now I understand why it happened." People know from experience that airtight seed storage is important, but often do not have the money to buy a plastic or steel drum. Most poor households store their rice seed in jute bags or earthen pots and spend considerable time re-drying it every two to six weeks. While watching the storage video some women were surprised to learn that earthen pots can absorb moisture through their bottom and sides (although a fourth of them already knew that).

Video allows presenting people with a wide range of new ideas to stimulate innovation. After watching the videos, 85% tried out different storage pots the next season, mainly smaller and more airtight structures.

Several people mentioned painting their earthen storage pots. They find the idea not just practical, but a charming way to add a bit of colour to the home, since the pots are stored on bamboo platforms right inside the house. It was easy to find people who had sealed the pots with clay, and who had put bags in the pots to fill up the dead air space. This technology seems well on its way to adoption.

The use of botanicals such as neem, bishkatali and tobacco leaves in storage containers increased from 5 to 75% with video and from 25 to 55% with farmer-to-farmer extension.

KEYS FOR SUCCESS

Seeing is believing

In 1938, thousands of people in the U.S. believed they were being attacked by Martians, after hearing H.G. Wells' novel *War of the Worlds* in a radio broadcast. For many people, media are more convincing than being told by a person. When invited to give feedback on the first rough edit of the video programmes, one of the women of Magurgary village in Bogra district mentioned: "If you talk by mouth, people in our village will not be convinced, but we have a lot of faith when we see it on TV."

Using appropriate language and symbols

Preparing and storing seed is largely women's work in Bangladesh (Hartmann and Boyce, 1983). The women from Maria village who appeared on-camera were
authentic. The fact that they had worked with rice seed all their lives no doubt helped win the sympathy of their audience.

When the NGO Agricultural Advisory Society later used the video in more than 30 villages in Sylhet district, none of the participants complained they couldn't understand the accent of the women from Bogra district. However, a fifth video, showing a local troupe from Bogra performing songs specifically designed around seed health issues, was hard to understand when shown in Sylhet. Many things influence whether or not people understand the dialect of another region. It helps if they are motivated in an interesting topic, if the speech is clear, and if there are visual clues like painted pots and drying tables. These factors need to be considered when assessing the scaling-up potential of both education and entertainment videos, which involved local communities in the production process.

Training or education videos can easily show how, for instance, a drying table is made, as in the Do-It-Yourself programmes shown on European and American TV. Images can be more universal than language. Video can bring messages across in a visual way that is hard to achieve through face-to-face extension. How can one teach that seed absorbs moisture when dried on the floor? Having one of the farmers sit on the earthen floor and showing his wet lungi was a memorable image and provoked hilarious laughter. Surely this is something people will talk about.

DIFFICULTIES, RISKS AND ASSUMPTIONS

It is difficult to measure how much people learnt. A survey may be too long, ask leading questions that give the answers away, and yield spurious results. For example, in the quantitative survey when we asked villagers if seeds with spots reduce yield, the number of correct answers actually went down after the video. The more abstract the learning topic, the harder to assess impact.

A qualitative study is often more revealing, but it also takes time, and some practice to analyse the answers. But the qualitative study helped us to understand the reasons why some things were being adopted, for example we could see the proud look on people's faces when they showed us the painted pots; they clearly liked to paint the pots because they thought they were pretty. People often chose a sky blue, instead of a dark or drab colour.
SHIP suggested that farmers sort seed to remove diseased ones, which would raise yields by 15%. All well and good, except that it may take eight hours to clean a kilo of seed, especially if one goes through it rice-grain-by-rice-grain looking for the ones with little spots on them. From the semi-structured interview we learnt that at least some farmers are modifying the technology, e.g. by cleaning rice seed more quickly just to remove the really bad grains, or cleaning a small amount of seed and planting it to verify that the harvest really is better.

Scaling up

A challenge of any participatory method is to maintain high quality when scaling-up. Feder et al. (1999) suggested that the generic problem of scaling-up in extension could be partly overcome through mobilising other players in extension, empowering farmers and their organisations, decentralisation and use of appropriate media. Videos allow one to demonstrate underlying biological and physical processes. Video animation could be used in the future to explain insect and disease life cycles and be used, for instance, in farmer field schools or Going Public. However, for techniques based on motor skills, like seed sorting, video must be complemented by practical sessions.

Videos are an excellent means of showing how technologies, such as seed drying tables, have been developed locally, and presenting many local innovations in an orderly way. For technologies that are newly introduced and perceived as time consuming, such as seed sorting, a prior selection of areas where they may have the highest impact could be part of developing the communication strategy.

Video allows one to bring together and draw on a broad range of training modules to develop locally appropriate training curricula. By adding a short, locally made entertainment video, local ownership could be increased.

Conclusion

We were surprised that adoption of technologies and experimentation was as high or higher among people who watched the videos as it was among people who had been trained by other farmers. For example, people only adopted drying tables if they had seen the video, but not after getting training from other farmers. The farmer trainers were, by the way, excellent; they were often the same farmers who had invented the technologies and appeared on the videos.

What we did see suggests that a well-made video, showing functional technologies and their underlying principles, can help a good part of the audience to adopt these technologies, and it can do so much easier and cheaper than face-to-face extension. A good video gets its ideas into the heads of some community members, who will
experiment with them. By then, the video has already played its role, and adoption will depend on how functional and profitable the technologies are.

REFERENCES

Part VI: Synthesis
People and Pro-Poor Innovation Systems

"Improving access to technologies and services for resource poor farmers, men and women, is one thing; considering them as partners, not just as recipients or beneficiaries, yet another."

EXTENSION, COMPLEXITY AND POVERTY

Innovations in Rural Extension shows that extension is about working with multiple actors, each with their personal and institutional histories, norms, values and interests. It is about getting the technologies right, improving access to inputs, knowledge and markets within existing policies, and stimulating learning and experimentation. These dimensions, and the level to which they are addressed in an integrated manner, determine the success of extension.

Adding a poverty aspect further complicates each of the above mentioned dimensions. The need for farmer participation becomes more stringent when developing and promoting pro-poor technologies and markets. But private businesses, scientists and governmental extension agents often have little or no experience in working with the poor, especially with women. Illiteracy rates are higher among poorer people, their personal networks are less elaborate and transaction costs (which represents time and costs to access information, services, markets and technologies, negotiate contracts, and so on) are comparatively higher compared to better-off farming families. High transaction costs not only affect the poor in getting access to support, but also affect service delivery agents who want to target the poor while developing extension or business models. To add to the complexity of reaching the one billion rural poor in this world, one has to consider the diversity of poverty itself (Berdegué, 2000). The diversity of strategies people use to cope with poverty adds to the need for plurality in extension.
Participatory technology development is an integral part of the innovation system and has been addressed as such in the various chapters. Reader-friendly overviews can be found in books by Ashby et al. (2000) and Bentley and Baker (2002). The multi-faceted needs of poor farmers and the multiple demands on their precious time influences our choice of methods for situation analysis, communication and training. This calls not only for diversity in extension mechanisms, but equally for a flexible use of multiple communication and learning tools fine-tuned to the specific client group, and building on the strengths of the range of service providers available in the system. This innovation systems approach not only moves away from the idea of a one-size-fits-all technology, but also of an ideal blue-print extension method (Biggs, 2004).

This chapter synthesises lessons learnt from the PETRRA project and ventures into some new areas. We will first describe the influence of policy on people driving the innovation system, followed by a discussion on the dynamic roles that multiple actors play in pro-poor extension and business development, and how actors interact in the 'theatre of agricultural innovation', to quote Röling and Jiggins (1998: 304). We further discuss the concept of transaction cost theory, illustrated with experiences from PETRRA. We then explore some of the promising innovations that emerged, followed by suggestions for future research.

From 1999 to 2004, PETRRA inspired partners to innovate not only with technologies, but also with farmer education, communication, organisational and institutional models in delivering pro-poor services and inputs. *Innovations in Rural Extension* offers us a rich menu for the reader to select their own dish. Ingredients can be replaced, spices added.

People Matter

People are the drivers of change. This is true for policy-makers, donors, service providers and clients, and hence justifies having a closer look at the human dimensions, social contexts and organisational cultures of these actors. In what follows, we use the term service in its broadest sense, including advice, training, technologies and anything that brings benefits to the intended target group.

Extension policy and public sector

In Bangladesh, changes in policy created an enabling environment for innovations to
emerge in seed systems (see Part V of this volume) and more broadly in the extension system. In what follows, we will give a brief overview of how large projects influenced policy at the Department of Agricultural Extension (DAE), followed by the various ways PETRRA interacted with DAE.

During the 1980s the World Bank funded DAE to implement the top-down training and visit (T&V) system of extension. The field extension agents or block supervisors visited mainly better-off farmers and hoped that technologies would spread spontaneously to other layers of the farming community. To trigger desired changes in the T&V model, in 1992 a first DAE reform initiative took place through the Agriculture Support Services Project (ASSP), funded by the World Bank, DFID and the Government of Bangladesh.

By 1996, the DAE had a new agricultural extension policy (NAEP), which also embraced the livestock, fisheries and forestry departments (Hassanulah, 2002). DFID further strengthened this initiative through the Agricultural Services Innovations and Reform Project (ASIRP) from 1999 to 2003. Major outputs of this project were a mission statement and a strategic plan to help motivate change in the organisation. The Department of Agricultural Extension’s mission is to provide efficient and effective need-based extension services to all categories of farmers, to enable them to optimise their use of resources in order to promote sustainable agriculture and socio-economic development.

DAE, 1999

With its large bureaucracy and roughly 24,000 staff members, the largest resource of extension staff in the country, the challenges to induce institutional change were enormous. Stakeholders within and beyond DAE felt that donors drove the agenda and pushed for the quick achievement of outputs in some areas, resulting in reduced internal ownership (Pasteur, 2002). In an interview with the New Agriculturalist in April 2000, Donal Brown, a former natural resources advisor for DFID in Bangladesh, confirmed this: “One could try and impose changes but, if one imposes, the long-term sustainability of these activities is just not going to happen.”

PETRRA’s modus operandi was guided by principles that stood in contrast to this charge of ‘lack of ownership’. From its very inception it nurtured a ‘learning by doing’ environment. PETRRA developed ideas jointly with their partners through personal or group interactions, and helped them to reflect on their own comparative advantages, their strengths and experiences, as such cultivating local ownership. Many technologies and extension methods developed or fine-tuned under PETRRA became mainstreamed in their respective partner organisations.

PETRRA worked with multiple service providers at the field level, while maintaining good links with policy makers and DAE senior management. DAE block supervisors were invited to participate in field activities in most of its sub-projects. This shift from DAE contracting out others to deliver services, as was the case...
Innovations In Rural Extension

under ASSP and ASIRP, to NGOs asking DAE to partner, indicates a move towards better balanced partnerships and power, as was recommended by World Bank expert Gary Alex (2001). He also indicated that the mechanisms set up under the ASIRP project, although they supported decentralisation and improved extension support to farmers, failed to strengthen research-extension linkages. This shortcoming partly explains why in August 2004 the state minister for agriculture so strongly endorsed the newly established focal area forums that bring representatives of poor farmers, researchers, private sector and intermediaries together (see Box 21.1).

Donors and flexibility

Creating a learning system requires commitment, flexibility and fundamental changes in norms and values, not only within implementing organisations (Pretty and Chambers, 1994; Röling and Wagemakers, 1998), but equally within the donor community.

"For far too long the heart of development practice has been characterized by an irony which saps the energies and motivations of even the most enthusiastic practitioners: those very institutions that are established to facilitate social change at one moment, invariably become its next constraint."

Bawden, 1994: 258

A project-wise and planned approach with logical frameworks or logframes is often proposed as the most appropriate way to organise innovations and development (Leeuwis, 1995). This philosophy, however, presumes that people proceed based on rationally organised decision-making and learning, which goes at the expense of creativity and scope to respond to new learning and unpredictable change.

"Funding agencies of innovation and development activities usually wish to know in advance which goals have been set and how these goals will be realized... thereby the capacity to learn, in intervention processes can be severely hampered."

Leeuwis, 1995

"Institutional innovation itself needs to be recognised as an important and valid (if difficult) research subject and output."

Dorward et al., 2000

"Some of these[donor programme management systems] will require a long timescale and a process approach, chipping away at problems, and being willing to be opportunistic and flexible."

Duncan et al., 2002

The new challenge for donors and implementing agencies alike is to develop mechanisms that allow one to capitalise on the diversity of perspectives, ideas and opportunities that arise when implementing a project. This points us to the principles of change management and organisational learning, which has been present in business literature for decades, but which has only been widely recognised more recently (Easterby-Smith and Araujo, 1999).
"The challenge for development agencies is whether they want to provide the incentives to encourage a learning and change culture and incorporate professional people with these skills into their staff and development projects."

Biggs and Smith, 2003

Organisational learning at the donor level also requires regular consultation with those implementing the projects and the clients to develop evidence-based policy, while at the same time, for gender for instance, gender-sensitive and gender-knowledgeable people in decision-making positions will be needed at both donor and project level.

"While there are some positive developments in donors' policies and practice, the key challenge to gender mainstreaming occurs at the implementation stage."

Macdonald, 2003

'Strong in diversity' has strong resonance in development circles (Chambers et al., 1989; Hall et al., 2003b; Biggs, 2004), and more recently in donor thinking about rural poverty alleviation (Berdegué and Escobar, 2001; Farrington et al., 2002a). Donors have a large responsibility in stimulating local innovations, but their support to mainly the largest NGOs with heavy management structures may push the development landscape into the other direction. Vertical integration has its limitations, especially for development organisations. Small, flexible and professional NGOs are often ignored despite their ability to quickly respond to emerging local needs and mobilise the poor, irrespective of their membership of microcredit programmes. To unlock the potential of more local actors, donors could support innovation systems research to identify champions, and to unravel their personal, historical and institutional contexts that shaped them.

Projects, service providers and potential champions

Innovations require more than creative capacity to invent new ideas; they require managerial skills and talent to transform good ideas into practice (Van der Ven et al., 1989 in Ayas, 1995). To this, we would like to add the need for motivation and a long-term vision.

"Unlike buying stocks, it is hard work to put ideas into practice
And no one can do everything"

Nalebuff and Ayres, 2003: 10

Ways to identify potential champions among project partners and to nurture their commitment deserve equal emphasis to the policies and regulations shaping institutional change. In their report for DFID on drivers of pro-poor change, Duncan et al. (2002) say that reform can be stimulated in two ways: by promoting broader processes of social and economic change (such as education, in particular of women); and through identifying and supporting champions of change (including
NGOs, community-based organisations, reform-minded elements of the political parties and of the civil service, the media, the private sector, professional associations, the research community and the Bangladeshi diaspora). The cases presented in this book highlight some of these champions. We believe that committed people are the glue that make partnerships successful and drive institutional change. Understanding the historical context and personal characteristics of those people shaping innovation systems is crucial, yet often ignored.

Short-term projects like PETRRA may be criticised for not having changed the institutional context in which scientists work or for not having brought in enough international extension experts. But one could argue that values, once experienced, become part of people's personal history that will remain within the system. All four top management officials from BRRI interviewed and more than 80% of the people involved in PETRRA sub-projects actually improved their knowledge, attitude and practices with regard to value-based, demand-led research (Solaiman et al., 2004). As for bringing in experts, the way in which new ideas are introduced and their modus operandi are at least as important as their actual technical or methodological expertise. Creating local ownership and empowering project staff are key to the sustainability of induced change. Although these are popular contemporary advocacies, they can easily fall to pieces in one's hands.

"Project cycle planning and management could be improved a great deal if it was acknowledged that all parts of projects are carried out by people working in social contexts, with all the features of social relationships that are present in human interactions."

Biggs and Smith, 2003

Professional pride and personal satisfaction after having worked through a problem with farmers can become major motivational factors for researchers and extensionists alike. But often scientists and governmental extension agents lack the opportunities of getting heart-warming feedback from resource-poor farmers, policy-makers and donors alike. It is with this in mind that PETRRA created an enabling environment for government, non-government and private sectors to experiment and develop or test new technologies and methods with farmers, together. Nurturing a shared hope for change was a prerequisite for PETRRA and its partners to walk the extra mile.

"Hope as an ontological need demands an anchoring in practice. Hopelessness and despair are both the consequence and the cause of inaction or immobilism."

Freire, 2003: 9

A first experience is a lesson for life. Through effective partnerships that build on complementary skills and mutual benefits, the chance of having a rich first experience increases. Besides, professional pride and ownership is shared from the on-set and boosts scaling-up, as witnessed by the video sub-project (Chapter 5) and
several others (Solaiman et al., 2004). Innovation systems research, which addresses organisational culture, can help in bringing 'like-minded' organisations or individuals closer together and ensure a higher partnership performance. We believe that win-win situations could occur both more frequently and with better planning.

“A more systematic consideration of organisational culture issues within project planning and management is likely to improve the effectiveness of development interventions”

Biggs and Smith, 2003

Cultivating local ownership is important, no doubt, but professional pride can also close one’s ears for criticism and stifle one’s creativity. We also experienced that ownership can lead to protectionism. Occasionally, PETRRA had to intervene to overcome partners’ apparent resistance in bringing their innovations into the public domain, as was the case when trying to scale up a new rice-duck farming system. Involving additional partners and shifting responsibilities offered solutions (see Chapter 12).

Appropriate incentives and communication mechanisms are important for lifting motivation of staff who are involved in developing innovations to a higher level of organisational pride and ownership. Some sub-projects had inadequate communication between local, regional and national offices and lacked clarity about mandate and decision-making power at each level, as such undermining staff motivation.

While we recognise professional pride, personal satisfaction and heart-warming feedback as important incentives for people to engage in participatory research, there also exists the risk of them sticking to their newly acquired comfort zone. We believe that researchers and extensionists need to be stimulated more to continuously challenge their own work, get out of their professional comfort zone pro-actively, and change their culture of non-listening to farmers.

Reaching rural women: policy and reality

Resource-poor farmers, women in particular, are extremely motivated to receive training in all aspects of agriculture (see Part II on gender). A selection of quotes presented by Orr et al. (2004a) from women and men who participated in PETRRA sub-projects illustrates the impact training has had on gender and livelihoods. "When we used to fail to preserve good quality seeds, husbands used to quarrel with us." "When you are poor, you don’t want to consult with your wife or family members." "We are not interested to sharecrop anymore, we want to work with our own agricultural land." But also links to scientists and government extension agents improved: "Before we were afraid of the Rural Development Academy, it is a well-protected area and big officers may not talk with us. Now we are proud to talk to scientists." “Now block supervisors come to us and even ask us for solutions.”

But women’s involvement in training programmes is still largely determined by donor policies. Reviewing EU and UK development co-operation, Khan (2003)
Innovations In Rural Extension

mentions that gender remains a low priority despite policy commitments to the contrary. She suggests donors to increase their collaboration with civil society organisations and to open up their dialogue with multiple actors.

Gender studies are useful for analysis of separate household needs, responsibilities and roles, but it has also led to new knowledge being compartmentalised. Perceived wisdom often reinforces existing gender discrimination in access to information:

"More attention must be paid to traditional women's roles, such as post-harvest activities and livestock care, as well as to new off-farm livelihood activities."

Gill et al., 2004

This stands in sharp contrast to PETRRA's findings, which promote women to get training on all aspects of agriculture, also on those areas where they do not necessarily do the work. Limiting women's training to their traditional roles excludes them from household decision-making about agriculture and inhibits empowerment.

"Women can be empowered by giving them equal access as men in training and extension programmes."

Hossain et al., 2004

Under PETRRA, resource-poor women, once trained, emerged as strong advocates. In some cases also women solidarity was a driving force for female farmer extension agents to establish new groups in new villages and promote low-cost agricultural technologies. Tools for identifying these champions among the rural poor as important actors in the innovation system, not just as beneficiaries, need further attention.

The transaction cost theory offers additional insights into forces that shape the innovation system, and into how access to technologies, services and markets can be improved for the poor.

TRANSACTIONS COSTS: BRINGING PEOPLE INTO ECONOMICS

In 1985, Williamson articulated the evolution of modern institutions as a key contributor to the theory of new institutional economics (NIE), which tries to apply economics in the real world where people and organisations engage in both transformation (production) and transaction (contracting and exchange) activities. As people are given a more central position, the theory borrows liberally from social science disciplines. More recently, it is finding its way into development and rural extension literature (Dorward et al., 2000; Morrison et al., 2000; Farrington et al., 2002a). The seeds of awareness and practice can be seen in the concept of institutional intermediation as used by the Bangladesh Rural Advancement Committee (BRAC) for developing a pro-poor poultry business model that reduced linkage weaknesses (Lovell, 1992). Similarly, in Magor (1996) the enterprise web
adds understanding as to why some promising technologies failed to be extended. Political economy aspects of research and development, as addressed by Biggs (1978, 1992) and Biggs and Farrington (1990), also relate to new institutional economics.

Transaction costs in pro-poor service delivery

The concept of transaction cost theory, which is central to new institutional economics, is described in Box 11.2. We do not claim to be specialists in new institutional economics, but in this book we have tried to use transaction cost theory as a pragmatic tool for analysing uptake pathway models for specific technologies. Below, we expand this line of thinking to a more generic level, namely to innovation systems and how transaction costs are affected when bringing in a pro-poor agenda.

It is important to note that transaction costs only mean anything in the social system in which they are analysed: the purpose of the system determines what is defined as a good transaction cost minimisation and what is not (Biggs, personal communication). For example, the highly socially differentiated agrarian sector of Bihar, India, used different modes of transactions in the labour, land and credit markets that were very transaction cost efficient. However, that was in a social system that maintained poverty and social exclusion over time (Biggs, 1978).

Establishing contacts and capacity

Service providers require contacts with multiple institutes and farmer groups, and they need time to source information or technologies and fine-tune them to the needs of their clients. In some cases they may also require training to upgrade their skills in order to perform. Basically, all these make up the transaction costs that by and large determine whether an actor will embark on providing a certain service to their clients or not; or whether a partnership or a network will be established to fulfil specific tasks. The PETRRA sub-projects described in this book illustrate the underlying principles.

To reduce transaction costs for pro-poor agricultural development, PETRRA facilitated the establishment of networks and partnerships between scientists, NGOs, and private sector entrepreneurs, from technology development and validation, all the way to promotion and developing communication materials. Establishing initial contacts between actors requires a facilitator and in the case of pro-poor agricultural development initial public or private investment is needed. Experimentation with institutional and organisational innovations does not happen spontaneously, nor does it happen overnight. The majority of the twenty sub-projects on uptake and extension were led by NGOs; seven established partnerships with community-based organisations.

Once capacity is built, other incentives take over. NGOs and private entrepreneurs were trained by national and international experts, a major motivational factor at the
early stages. But as the sub-projects gained more experience of working with poor farmers, NGOs started to realise how well-suited agriculture was for poverty alleviation and for integrating it with their other on-going programmes. After the Rangpur Dinajpur Rural Service (RDRS) embarked on seed production, other federations started producing polythene-lined jut bags as part of their income-generating activities (Chapter 20).

Sourcing and validating information

Sourcing and validating information may be a major constraint for service providers to embark on new areas. Bangladesh counts thousands of NGOs, yet only a few have agricultural expertise. Lack of technical capacity and information being a global issue for NGOs (IIRR, 1999), what would motivate them to engage in agriculture, where could they get relevant agricultural advice and technologies, and at what cost?

Under PETRRA, NGOs established technical links with government research and extension, and learnt to commit financial resources for tapping into this expertise. Links were established through the uptake forum, focal area forums or specific partnerships.

The focal area forums provide a mechanism for a wide range of actors to get continuous access to sources of technical expertise and streamline their efforts in validating technologies for local suitability, feasibility and acceptability (see Box 21.1). This breakthrough not only helps to optimise use of human and financial resources between actors from the government, NGOs and private sector, it also allows for local innovations to enter the formal research, extension and education systems. The Bangladesh Agricultural University and the NGO RDRS signed a memorandum of understanding for students to conduct action research with poor farmers. The role of NGOs as intermediaries between formal educational institutions and the rural people remains an area of great potential for developing innovations (Wallace, 1994), and may help to institutionalise participatory approaches in higher education.

Establishing farmer groups

Working with the poor may initially increase costs. The case on the aromatic rice value chain (Chapter 14) raises the issue of cost-effectiveness in establishing producer groups for domestic and export markets. There is an extra cost involved in organising a larger number of poor farmers compared to working with a few well-off farmers, but in reality this approach has the potential to create a substantial volume of rural employment (Farrington et al., 2002a). Public fund allocation strategies need to take these implications for the labour market into account. Working with the poor also allows for economies of scale, especially when NGOs are involved to coordinate their members or those of local NGOs and community-based organisations (see Chapters 18-20).
But organisations that have the necessary skills and contacts, such as commercial businesses, researchers and governmental extension officers, often lack the knowledge or confidence to facilitate the establishment of groups of poor farmers, despite them constituting the largest part of the farming community. So, one of the questions that arise is: Do I organise farmer groups myself or establish a strategic partnership with someone else who can facilitate this more efficiently than me? In communities where various groups already exist, building on these rather than establishing new ones limits transaction costs.

Vertical integration or strategic networks

For establishing contacts, building capacity, sourcing and validating information, and establishing farmer groups, an actor can opt to go solo or link up with others. The governmental research and extension institutes along with many NGOs are generally used to doing things solo; only since the reshuffle of public funds, the need has arisen to start thinking about strategic partnerships. Also, international companies operating in developing countries often lack the usual infrastructure and support system: market intelligence, manufacturing capabilities, or distribution channels. So, they have much to gain from tapping into local networks and local knowledge (WBCSD, 2004).

A strategic network is a way to lower transaction costs without having to vertically integrate (Jarillo, 1995). As the different partners remain independent, there is more flexibility, but also the need for building trust becomes more prevalent. Under PETRRA, especially the smaller NGOs chose to build strategic networks with local organisations. By having worked with over 150 local NGOs and community-based organisations in various projects, the Agricultural Advisory Society (AAS) has filtered out the ‘opportunistic feeders’. They now have a rich source of sincere organisational relationships on which they can build, as and when they see fit.

Strategic networks may be formed based on economic considerations, although organisational history and personal contacts often play an equally important role in selecting partners, as indicated by several case studies in this book. It is our experience that the success of a partnership between NGOs and community-based organisations, for instance, is determined by the size, history and organisational culture of the partners, along with the influence sphere of the individuals leading the partnership.

Partnerships are dynamic and context-specific: multiple scenarios are possible depending on the diversity and density of service providers, their intrinsic strengths, the type of service to be delivered, the intended client group, and so on.

Diversity of service providers

We use the term diversity to indicate both the number of different actors and their relative abundance or density in a given area. These dimensions affect choice and
quality of service delivery, from the community level up to the national and international level.

Multiple actors: competing or complementing?

Who has what role to play in developing pro-poor technologies and establishing pro-poor markets? We will address how different actors may compete with or complement one another in the delivery of quality seed supply, complex technologies, and training and advice. These key 'commodities' will help to clarify the need for diversity in service providers.

Seed suppliers

According to Tripp and Pal (2000) plenty of private sector seed enterprises have emerged in developing countries, but there are few examples of those embarking on public crop varieties, such as self-pollinated rice and wheat that are not hybrids. Also, NGO and private seed enterprises not only compete with public sector seed providers and farm-saved seed, but also between themselves (Almekinders and Louwaars, 1999). Despite this, a number of innovations in the rice seed system emerged under PETRRA. As the rice seed market in Bangladesh is far from saturated and poor farmers are eager to get access to quality seed, we anticipate that more competition will strengthen self-imposed quality control mechanisms (see Part V of this volume).

Most of the private seed enterprises in India offer few economies of scale, but high economies of scope as they can expand into other seed crops (Tripp and Pal, 2001). This may be only partly true for Bangladesh. Some NGOs embarked on wheat, mustard, potato and onion seed production, after having learnt about rice seed production. But as the rice seed market is far from saturated in Bangladesh, economies of scale are still possible. Syngenta started producing rice seed in the late 1990s, and is gradually increasing their production while they gather experience and explore the market.

But the incentives are not merely economic. While for seed-producing agribusinesses it offers an option to diversify their income and strengthen their customer base, for poor farmer seed entrepreneurs it more often is an end to a means. Rice seed production offers a pathway out of poverty and a pathway into community respect. "I no longer have to buy, but can actually sell seed," says Shamima Akhter during a village fair in Kishoreganj, "My husband, mother-in-law and neighbours respect me much more now."

In brief, governmental organisations, agribusinesses, NGOs and farmers each have a role to play in the production and supply of quality seed. While most actors reach their clientele through an existing distribution network, small-scale farmer seed entrepreneurs diversify the outlets for seed in the community exponentially. By 2004, the awareness of quality seed was still growing, leading to increased demands.
Public funds are especially required in the initial phase to build capacity among NGOs and small-scale, private seed entrepreneurs. But once capacity is built, one should be able to produce and trade seed on a full commercial basis, in absence of market distorting policies.

Suppliers of complex technologies

Do the same principles in developing pro-poor seed businesses hold for the dissemination of a complex technology, a new farming system or a value chain for exporting aromatic rice? Often these innovations are non-existent at the time of intervention, resulting in a higher perceived potential to position oneself in these new markets. But these innovations are intrinsically complex; as more side conditions need to be fulfilled, initiatives by individuals or small-scale enterprises are less likely to take place.

To disseminate or establish complex technologies, also larger organisations or businesses need to make crucial decisions on opting for vertical integration or strategic partnerships, on addressing all required activities themselves or outsourcing some. Partners are selected based on their competitive strength, interest in participation and for a variety of motivational and personal reasons. Establishing contacts and trust between the various actors is part of the initial transaction costs. To help organisations in this decision-making process, Magor introduced the enterprise web as an analytical tool for strategic planning (see Part IV).

Irrespective of the level of market integration, public funds are likely to be required to help disseminate complex pro-poor technologies. Once networks and necessary conditions are fulfilled, the system should be self-sustaining.

Suppliers of training and advice

In a synthesis of a six-country study on extension, Farrington et al. (2002b) recommended to create and support opportunities for the poor, not just as producers and labourers, but also as consumers. However, they fail to acknowledge the active role poor farmers can play in delivering services, advice and technologies, themselves. Pioneering large businesses already started to blend social and financial values under the umbrella of corporate social responsibility, and involve the poor in their markets, as customers and entrepreneurs (WBCSD, 2004). Training the poor is considered a necessary investment.

Cases presented in this book support the need to consider poor farmers as partners, not just as recipients or beneficiaries. Giving them the opportunity to play a role in delivering services themselves, as a means to social and economic empowerment, opens up a whole new debate on public fund allocation. Several interesting concepts and experiences have been presented recently (Katz, 2002; Rivera and Zijp, 2002; Scheuermeier, 2003). Rather than channelling money through service providers, for
instance, public funds could be assigned to farmer groups who then decide how to best use it.

This book gives examples of poor farmers, men and women, taking on the role of seed producers, sellers and marketing agents, but also of extension agents. Once trained, they quite easily established new groups of poor farmers in other villages and taught them about rice and seed production, as well as soil fertility management. RDRS federations started to use communicative female farmers as resource persons to train other groups, paying them Tk 50 (US$ 0.90) per session.

Public funds allocation is needed in well-integrated areas for the delivery of services related to health, safety and the environment, whereas substantial support will remain crucial for agricultural extension related to subsistence crop and for those areas where access to information, advice and markets is weak (Farrington et al., 2002a and b).

Local government

One would be tempted to think that local governments are more aware of people's needs, constraints and opportunities, and should be better able to respond to these than the central government. Although they can play a significant role in community initiatives for agricultural development, local governments are not a necessary or sufficient condition (Tendler, 1997; Bentley and Boa, 2004). So far, in Bangladesh social development organisations have been much more pro-active in involving local government than actors working in the field of agriculture have been. Shifts may gradually occur with some NGOs (re)discovering the importance of agriculture in rural development.

Although clear benefits could be reaped, most PETRRA partners did not establish links with the local government or Union Parishad. For the rice-duck and mobile pump sub-projects, both complex enterprises with clear impacts on the wider community, local government support was a prerequisite. Also, the Rural Development Academy (RDA) in Bogra built strong links with the Union Parishad, whose chairman was well known to the deputy director agriculture at RDA. The latter involved the local government in organising various awareness and scaling-up activities under the Seed Health Improvement sub-project. Good human relationships are the corner stone for a successful collaboration.

Learning networks and forums

Arising from the need to provide farmers with consistent information, PETRRA sub-projects started to interact more at the regional level among themselves and with other projects, NGOs, farmer representatives, governmental organisations and commercial businesses with an interest in rice.

Two focal area forums, namely in the Northeast and the Northwest, emerged as multiple actor platforms for: (i) channelling the voice of poor farmers, men and
women; (ii) establishing a network that facilitates quality control and dissemination of quality seed in the region; (iii) screening, validating and transforming information into consistent advice, as well as for (iv) pooling resources in training farmers (Samsuzzaman and Mazid, 2004). The focal area forums are a practical example of decentralised decision-making in agricultural research and extension.

Currently, two farmers are members of the Northwest focal area forum, along with representatives of governmental institutes (BRRI, BARI, BINA and BADC), NGOs (RDRS and GKF), the government extensions service (DAE) and private companies. Mrs. Bulbuli Rani, vice chair of one of the RDRS federations, was elected as a farmer representative. Over the years, she has established contacts with multiple organisations and interacted in action research with scientists and university students. She now critically assesses new technologies in her own field, helps to coordinate seed production at the community level and set up a small tailor workshop at her house, where she teaches young ladies from the neighbourhood.

RDRS, stimulated by PETRRA, started the initiative for a focal area forum in August 2002. Although they asked the DAE numerous times to sign a memorandum of understanding to become a formal member of the Northwest focal area forum, their initial reaction was one of reservation and hesitation.

Several events brought the various actors closer together, but it wasn’t until the state minister for agriculture provided his support during a policy dialogue in 2004 that the director-general of DAE came on board (Box 21.1). Immediately after, the DAE block supervisors were asked to collect the meeting times of all RDRS federations, and received instructions to meet the farmer groups at times that these already gather for other activities. As such, DAE saves considerable time by not having to organise group meetings, and farmers save time by having to interrupt their schedule only once a week.

"I could not believe that the minister would accept the idea so strongly; he was brilliant," said Dr. Syed Samsuzzaman, one of the focal area forum initiators from RDRS, immediately after the policy dialogue.

"Honouring an agreement is a strong motivator to behave in the collective interest."

Clearly the new agricultural extension policy enabled an initiative like the focal area forum to emerge and crystallise, but until this event, the country lacked good examples of how partnerships and decentralisation in research and extension could take shape on the ground. The focal area forums became a reality, and the endorsement by the minister a historic event, probably as significant as the establishment of the new agricultural extension policy itself. Mechanisms of cost-sharing were discussed from the early on-set and ensured that this platform got a life-span that transcended the PETRRA project.
August 3, 2004 was a great day for all Northwest focal area forum members as the state minister for agriculture and other distinguished guests participated in a policy dialogue with them and other agricultural players in the region. The top decision-makers not only expressed their appreciation of the concept, activities and progress made, the minister also instructed all to immediately take necessary action to formalise the forum and replicate it. sehholds with 3-8 months food security from own rice production, with some flexibility depending on region, actor and technology

"Congratulations to the organisers who have invited me to such an enthusiastic meeting. I had been thinking over this issue for a long time. My experience with farmers was that there is a gap between scientists and farmers; I failed to see hope. But today I see some light and hope for the first time that it can work. The focal area forum concept has come to us as a big opportunity and the director-general DAE should go for signing a memorandum of understanding involving all relevant DAE offices. We should try to replicate it all over Bangladesh."

Mr. Mirza Fakhrul Islam Alamgir M.P., state minister for agriculture

"Advice of the minister is very vital to sign a memorandum of understanding with relevant partners in the focal area forum. We will start the revolution. We start with rice but will expand to various other crops. PETRRA has made a revolutionary contribution to all this. ... Focal area forum activities are like a one-stop service. ... We have reduced the gap between the different actors."

Mr. Tariq Hassan, director-general DAE

"We talked about research linkage and its importance. The focal area forum showed the pathways as to how it can be done. ... Coordination, capital and credit can play a very important role. ... The focal area forum is a model that can be replicated all over Bangladesh if encouraged and supported by the government."

Dr. A. R. Gomosta, director research, BRRI

"We started with rice because it is very important and it still needs continued development. The Focal area concept very much matches with the new agricultural extension policy. Within the focal area forum we are not only governmental organisations and NGOs, but also private sector. We are supporting farmer groups organised by RDRS. We are doing it in addition to, but not hampering our regular programme, rather strengthening it."

Mr. Elias Hossain, additional director DAE, Rangpur

(Saliruddin, 2004)

Extension services can tap into multiple resources of actors, methods and tools. Under PETRRA a vast range of methods and tools were developed, tested and validated in order to make the learning environment more accommodating for the poor, women in particular. Each of the examples, or elements out of them, can be used by any service provider depending on the situational context, as such adding further to the desired diversity in extension and pro-poor business development.
MULTIPLE EXTENSION AND LEARNING METHODS

Which extension method is the best and which one do we promote, is a question often asked. But does it make sense to promote a single method? By proceeding under the perspective of the 'pipeline' model of linear transfer of methods (in analogy to the concept of linear transfer of technologies), many opportunities to reduce poverty in a cost-effective way are missed (Biggs, 2004). The scope for local actors to innovate with extension methods and institutional models is reduced from the very beginning. Clearly new thinking is required as to how to reach more people more quickly (IIRR, 2000). Promoting diversity and cross-fertilisation between various extension, farmer education and organisational development methods point the way ahead (Hagmann et al., 1998; Braun et al., 2000; Van Mele and Braun, 2004; this volume). A lesson for donors and decision-makers, therefore, is to avoid endorsing extension monocultures.

Techniques from anthropology and other social sciences allow us to prioritise problems of communities (or groups within), learn about areas where new knowledge is likely to result in innovations, as well as what opportunities exist to build learning methods into existing organisational structures. There is no single extension method that reaches all farmers, neither is there a service delivery system that works under all conditions.

In what follows, we will first discuss how transaction costs influence poor farmers' access to information and education. We then consider farmer field schools (FFS) as one of the main innovations in farmer education, followed by a range of other methods and tools tested under PETRRA, and which we believe have great potential to complement farmer field schools.

Transaction costs in receiving extension services

Under PETRRA, a number of transaction cost reducing innovations emerged in terms of capacity building and awareness raising. Demonstration plots were no longer in the fields of better-off farmers, but in poor farmers' fields. Women received training in their courtyard or in buildings of community institutions, rather than having residential training sessions (see Part II). Through partnerships with community-based organisations poor farmers, men and women, easily engaged as group coordinators and in some cases as extension agents in their own and neighbouring villages.

For access to technologies such as seed, transaction costs for the clients is lowest when the retailers are actually farmers within their own community. To remain workable, these systems rely on regular supply of foundation seed, resolved by the rice seed network, NGOs and strategic networks with community-based organisations (see Part V). The potential benefits of decentralising a system lie in the strengths of its local institutions.
Bringing multiple services together through carefully identified local champions significantly reduces transaction costs for the poor. This concept builds on the one-stop shop. The idea is definitely not to go for one model, one method or one service provider, but to offer multiple services in the same person, locality or facility. To give some examples, the NGO AAS trained resource-poor farmers to become seed producers, so people in the community know where to get good quality seed. But AAS also trained the same people as village soil fertility management experts, as such bringing multiple services together in the same persons (Chapter 8). Going Public, to interact with people where they already gather such as in market places, or linking agricultural extension to traditional entertainment brings multiple services together in the same locality (Chapters 9 and 10). The NGO Shushilan, on the other hand, uses their facility as a one-stop shop. They sell quality seed, trustworthy fertilisers, vaccines for livestock among other inputs, while farmers can also bring in samples of soil, water or diseased plants and consult the small library and field workers at their Agricultural Service Centre. When we asked the librarian, Ms. Suriya Sultana, how she would like to see her small rural library evolve, she mentioned that pictorial children books would be a good addition, as women tend to bring their children when visiting the library.

Under PETRRA, many of the NGOs moved towards inclusion of agricultural programmes. RDRS organised weekly training sessions on rice-potato-rice cropping for groups of women in the village. But these were generally held the day after they had gathered for their credit programme. As women already meet on a weekly basis, this opportunity could be grasped to identify their interests and needs, and give them access to other services, be it public health, information or markets.

Apart from reducing transaction costs by improving access to information and technologies, service providers need to assess the critical amounts of information that farmers need in order to trigger local innovation. By capturing this critical amount in farmer education programmes, impact can be realised more efficiently and at lower cost.

Learning from farmer field schools

The idea to replace recommendations with education based on experiential learning has brought about a major paradigm shift in extension (Kenmore et al., 1987; Röling and Pretty, 1997; Röling and Wagemakers, 1998), with farmer field schools being
The farmer field school uses experiential learning to improve farmers’ agroecological knowledge, as well as their experimentation and decision-making skills (van de Fliert, 1993; Gallagher, 2003; Winarto, 2004). A field school usually comprises season-long regular group meetings with a set pattern of activities. This includes agroecosystem analysis whereby farmers visit their field on a regular basis, observe the crop, its pests, natural enemies and environment, after which they return and draw what they just observed on a large poster paper. The whole exercise involves measurement, analysis, peer review and experimentation. But a field school also involves presentations and special topics along with group building activities. Farmer field schools, which were initially developed to tackle the brown plant hopper problem in rice in the late 1980s, are now promoted in various agricultural, fisheries, livestock and forestry programmes. For examples see LEISA Magazine March 2003 at www.leisa.info.

Box 21.2
Farmer Field Schools at a Glance

In rice-based cropping systems, the immediate benefits of field schools continue to be closely linked to the use of inputs, especially insecticides. According to Bartlett (2004), farmer field schools are not designed for rural families with no access to land, and there are fewer immediate benefits for poor farmers who have not been using high levels of purchased inputs. Also, women from poor households often sell their labour and find it difficult to participate in regular training sessions, whereas the better the economic position in society, the stricter the form of purdah or seclusion that women in Bangladesh practice (Banu and Bode, 2002). They may avoid contact with men with whom they have no direct kinship relation or simply avoid public places altogether. What scope is there to strengthen cultural and social sensitivity of extension methods?

We believe that the shift to learner-centred approaches in extension is one of the better evolutions over the last two decades, but at the same time we want to pose a challenge: that farmer field schools and other learner-centred approaches should be promoted as part of a broader framework of farmer and community development, complemented by other methods, and based on local institutional strengths. Rice farmer field schools have been developed longest, yet we still lack evidence of them experimenting with or being complemented by small or mass media to reach those millions of farmers that haven’t been lucky to be part of a field school. How to reach more farmers with quality education remains an issue (Heong et al., 1998). Bangladesh has roughly 12 million farm families of which 9.4 million are small farm holdings with less than one hectare (BBS, 2004). By 2001 and under various projects, the Department of Agricultural Extension established 6,200 farmer field schools across Bangladesh; roughly 157,000 farmers received direct training in integrated pest management (IPM) in rice (see www.communityipm.org). Even if all rice farmer field school efforts undertaken over the past 15 years across the world were to have been concentrated in Bangladesh, still only two million farmers would have been reached.
Even if one takes an optimistic view of how farmers might use their field school education to offer this to other farmers, and to develop community-based organisations that undertake progressively more ambitious self-directed development, the impact would not meet the need. Are farmer field schools designed for and suited to become a mass education approach? If not, how might we redefine their role?

Barzman and Desilles (2002) pointed to an excessive preoccupation of their farmer field school programme to train a certain number of farmers annually, under pressure of donors, and at the expense of quality of the learning process. This was confirmed later by a report for CARE Bangladesh by Andrew Bartlett (2004) who mentioned that in the scaling-up, project staff became stuck in delivery mode. In an early review of farmer field schools in Asia, van de Fliert (1993) mentioned that training quality and intensity deteriorated as the programme scaled up. So how can quality be maintained in farmer education methods when going to scale?

We consider the key objective and strength of farmer field schools to lie in its focus on learning, not on reaching large numbers. Understanding ecological relationships, and changing learning and experimental behaviour can be achieved through participatory learning approaches, such as farmer field schools, which offer great opportunities to develop, validate and select the most relevant learning exercises that trigger experimentation and innovation. But additional value could be obtained, once these methods, exercises and materials are developed, if they were incorporated into other learner-centred methods such as video, entertainment-education, or mass media (see Part III on learning with rural communities), used by champions positioned in organisations outside the field school.

Other methods: going to scale

An overarching factor stimulating creativity was the competitive tender mechanism that PETRRA used in approving sub-projects. As none of the extension methods were imposed, but built on the organisations’ strengths and philosophies, most innovations became mainstreamed in the respective organisations that researched them. Ownership was cultivated through a learning by doing culture and a flexible management system.

By adding a certain element of competition and stimulating cross-fertilisation between methods, PETRRA speeded up the innovation processes. During regular uptake forum meetings, each partner had to present their methods to other sub-projects, DAE staff and other non-participating NGOs. A knowledge, attitude and practice study revealed that out of 27 sub-projects covered by the study, findings of 21 were used by a wide range of governmental and non-governmental organisations (Solaiman et al., 2004). Folk songs, for instance, were readily taken up by other organisations, indicating that extension methods should not only be appropriate and attractive to the client group, but equally to those implementing it.
External reviewers asked us to make comparisons between methods, but this would mean taking methods out of their context: any method may have a high or a low impact, be cost-effective or not, depending on those implementing the method, the learning content, and the characteristics of the clients and communities. Nevertheless, we have tried to extract some generic characteristics in terms of investment requirement and anticipated outputs (see Table 21.1). A service provider who wants to try out any of these methods could use this as a decision-making tool.

Table 21.1 Qualitative assessment of extension methods

<table>
<thead>
<tr>
<th>METHOD</th>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FACILITATION SKILLS</td>
<td>MONEY</td>
</tr>
<tr>
<td>Farmer field schools</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Farmer-to-farmer extension</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Video-supported learning</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Going Public</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Entertainment-education(^2)</td>
<td>Low</td>
<td>Medium</td>
</tr>
</tbody>
</table>

\(^1\)Will be high if objective of video is social mobilisation. \(^2\)Can be live shows or programmes on radio or TV.

Women-led extension approach

A recent FAO survey showed that female farmers receive only five percent of all agricultural extension services worldwide and that only 15% of the world's extension agents are women (FAO, 2004). Women farmers in Nigeria were more satisfied with the quality of the services delivered by female than by male extension agents (Lahai et al., 2000). That more women should be recruited by service providers is well known, but often social, cultural or institutional barriers have hampered this. Under PETRRA, trained village women who displayed a high level of solidarity and commitment became extension agents; they organised events in their neighbouring villages once a month (Chapter 3). Working through community-based organisations and having flexible employment formulas for village women extension agents may help to reduce the gender imbalance in extension services and increase women's access to extension.

Family approach in training

This approach showed that training husbands and wives together (with or without children) improved intra-household decision-making and community respect.
Innovations In Rural Extension

The family approach helps to reduce social and cultural barriers; it enables women to get access to services delivered by outsiders more easily. The method has been pioneered in Bangladesh by CYMMIT for wheat post-harvest (Meisner et al., 2004), and has been expanded under PETRRA by giving women access to information about all agricultural topics.

Farmer-to-farmer extension

Farmer-to-farmer extension can be very powerful, especially when linked to experiential learning and participatory rural appraisal (PRA) techniques, such as village soil fertility maps (Chapter 8). Building a vast network of local NGOs and community-based organisations may lead to a more efficient use of social capital, and allow a more coordinated approach in training farmer extension agents.

Video-supported learning

Unexpectedly, comparative analysis revealed that women learnt more things from meticulously designed videos on post-harvest technologies, including insect and disease management, than from farmer-to-farmer extension (Chapter 7). The videos resulted in higher levels of experimentation and adoption of new technologies.

Over the last couple of decades we have seen many changes in the use and role of media for communication in development (Norrish, 1998). The potential of using video within the framework of an interactive dialogue, and still having a video product at the end is an enormous advantage when it comes to scaling-up. Especially for quality maintenance of methods like farmer field schools, videos can add tremendous value, as the messages can be carefully engineered and remain the same. The instant playback feature of video enables continuous participation and immediate feedback. Besides, images have a high credibility and can easily motivate people (Dagron, 2001).

Apart from the potential of video adding value to farmer field schools, field-based experiential learning methods can also provide useful inputs for making mass media farmer education programmes (see also Chapter 6).

Going Public

A method whereby extensionists or scientists go to public places, such as markets, to interact with farmers was developed earlier by CABI Bioscience in another project in Bolivia (Bentley et al., 2003), and tested in Bangladesh with AAS, BRRI and the Rural Development Academy at Bogra.

To address the criticism that farmer field school graduates hardly share their learning with the wider community, as was the case in the Philippines (Rola et al., 2002), Going Public offers one of the possible solutions. Van Mele and Zakaria (2004) invited trained farmers to man a stand at a weekly hat or market and to share their
newly acquired seed health expertise with interested visitors. And because women in Bangladesh remain mainly confined to their homestead, Going Public was further modified to reach more women by going to the uthan or courtyard (Chapter 9).

Entertainment-education

When Shushilan embarked on their sub-project to test improved seed uptake pathways, they started with the more familiar field demonstration days. Through the regular uptake forum meetings, organised by PETRRA, they started to discover their own organisational strengths. The picture songs emerged as a jewel in the crown. With their vast experience in using traditional media such as drama and songs, Shushilan developed a new cultural programme with agricultural messages. Music, lyrics and paintings all came nicely together in the picture songs, which turned out to be a culturally appropriate way to reach large numbers of rural women (Chapter 10).

Traditional media, such as folk songs, drama and puppet shows were, for instance, proposed in Sri Lanka to complement group training in integrated pest management (IPM) (van de Fliert and Matteson, 1989). But FAO perceived multimedia strategic extension campaigns as only suitable for awareness raising. Soon afterwards, they piloted farmer field schools in Indonesia and since this was perceived a more effective approach to promote IPM, it replaced all other IPM extension approaches in Sri Lanka.

Only in the mid 1990s, and under supervision of Dr. KL Heong from IRRI, entertainment-education was successfully applied to address pesticide misuse by Vietnamese rice farmers. Because farmers depend on local radio broadcasts as their primary source of information, the researchers placed the farmers' ever-present radios at the heart of a media campaign. "We got a group of actors to play out a series of brief comedies, relating solid scientific facts through rustic situations to make the audience laugh," Dr. Heong explained. "We found these simple, humorous messages fixed themselves in the minds of thousands of farmers."

Entertainment-education refers to "the process of purposefully designing and implementing a media message to both entertain and educate, in order to increase audience knowledge about an educational issue, create favourable attitudes, and change overt behaviour" (Singhal and Rogers, 2003). Considering that entertainment-education is a major approach used to trigger behavioural change on public health issues, it is quite remarkable how little it is used in agricultural development. A quick search on the internet yielded 94,300 results for entertainment-education and health, compared to only 4,130 when combined with agriculture, indicating the huge potential for agricultural extension to draw from cross-sector experiences. Likewise, experiences presented in this book may have practical applications for fisheries, forestry, public health and other sectors.
Primary school and college education

Reaching farmers through their children is a very powerful extension approach (Nathanial, 1998; CIP-UPWARD, 2003; Arnst et al., 2004). Although several national NGOs in Bangladesh (e.g. BRAC, PROSHIKA, FIVDB and RDRS) develop their own non-formal education curricula and learning tools, integrating these with their agricultural development programmes has so far remained under-explored. NGOs in Nepal, such as the Centre for Agro-Ecology and Development (CAED), have been using schools for years with very promising outcomes.

In Table 21.2 we present the potential circumstances in which each of the methods described can be used. As stated earlier, these offer some broad guidance only.

Making small modifications of education curricula can be a real challenge, even if the environment seems conducive at first. In 2002, Van Mele tried to introduce some of the seed health exercises in the non-formal primary education programme of the NGO BRAC, the largest non-formal education system in the world (Mednick, 2004). With a group of women teachers the curriculum for biology

Table 21.2 Suggested use of extension methods

<table>
<thead>
<tr>
<th>METHOD</th>
<th>CIRCUMSTANCES UNDER WHICH METHOD MAY BE USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women-led group extension</td>
<td>Requires communities where a certain critical mass of social capital is already in place</td>
</tr>
<tr>
<td>Family approach in training</td>
<td>Is applicable for any community, irrespective of the level of social capital</td>
</tr>
<tr>
<td>Farmer-to-farmer extension</td>
<td>Requires solid organisational support for it to be effective and will work best if implemented alongside other rural development activities</td>
</tr>
<tr>
<td>Farmer field schools</td>
<td>Requires skilled facilitators and high initial investment cost. Ideally used in pilot phases to develop and test learning tools that can be incorporated in all other methods. Principles and processes could be built into curriculum of wide range of service providers</td>
</tr>
<tr>
<td>Video-supported learning</td>
<td>Requires multidisciplinary approach in developing scripts. Adds value to any other method. Can be effective to educate farmers in remote areas without the need for well-trained facilitators. May need adjustment to fit regional or local culture</td>
</tr>
<tr>
<td>Going Public</td>
<td>Can be tried by any service provider with little preparation. Lends itself well to reach people in remote areas where general organisational support may be weak</td>
</tr>
<tr>
<td>Entertainment-education</td>
<td>Requires multidisciplinary approach in developing scripts. If no use is made of radio or TV, the method is limited to areas where live performers operate. Highly appropriate to reach rural women</td>
</tr>
<tr>
<td>Primary school and college education</td>
<td>Requires flexibility of education system and teachers' corps to include processes and tools of farmer field schools, or to organise video or agricultural entertainment shows. Children welcome this as a shift from sterile teaching methods in most rural areas</td>
</tr>
</tbody>
</table>
classes was assessed: as sowing seed, observing plant growth, and weekly drawing was already part of their curriculum, only minor modifications were needed. Children would bring a small amount of rice seed from their home, manually clean it in the classroom, and sow the spotted and irregular seeds in a separate pot from the healthy seeds. Within one season and after having trained the teachers, more than 2,000 children in 70 schools learnt about rice seed health. Children brought the message back home and stimulated parents to test the importance of seed health for themselves. The monthly parents meetings revealed an increased awareness and improved practice. The experience looked promising: as BRAC operates thousands of schools across the country and educates mainly girls, the potential was enormous. But it was never mainstreamed, illustrating one of the challenges of vertical scaling-up (between programmes) within large rural development organisations.

Multiple learning tools

Sometimes discussions arose in meetings between PETRRA sub-projects as to whether video is a tool or a method. Basically, the process of developing a video can be empowering in terms of the experiential learning that occurs among those involved in its development; the end-product, the video tape or DVD, is the tool that can be used to share information contained in the video with many others. The method deals with how this end-product is used in training and determines the quality of the learning that takes place among those watching it. Building a common understanding of terminologies used in extension method research was one of the hurdles PETRRA had to tackle during various uptake forum meetings. All its 20 sub-projects on uptake and extension involved partnerships with NGOs and various other actors. Seven of them were led by researchers, the others by NGOs mostly in partnership with researchers and DAE staff. Especially those sub-projects that were approved at the earlier stages of PETRRA embarked on doing extension, rather than on extension method research. This challenge was addressed in an iterative and interactive way, as part of the project learning cycle.

Discovery learning exercises

Discovery learning relies on engaging people in experimentation, observation, measurement and so on, activities which allow people to draw their own
conclusions. Creating tools for discovery learning has emerged as an important challenge for scientists (Röling and Jiggins, 1998).

Before developing discovery learning exercises, testing scientists’ perceptions about local knowledge is required. As farmer field schools have not included issues like seed storage management (Bjoernsen Gurung, 2003), seed health discovery learning exercises were developed with Bangladeshi scientists from national research institutes and universities under PETRRA (Van Mele, 2002). According to one of the senior entomologist who participated in the workshop, "Farmers don't know the exact role of seed moisture content on the development of storage insect pest." A discovery learning exercise was developed to address this knowledge gap on the life cycle of storage insect pests. However, in-depth knowledge analysis carried out for the video project on post-harvest about one year later (see Chapters 5 and 7) revealed that women knew all too well that high seed moisture resulted in higher insect infestation (without knowing about increased insect fecundity rates). Addressing the issue of insect life cycle was useless in this case: the missing knowledge was that moisture was carried by air through the pores of the earthen storage pots. Porosity had to be addressed, not insect life cycles. Scientists’ perceptions about local knowledge shouldn't be taken for granted when developing farmer education curricula and tools.

Overall, creativity and flexibility are needed to develop conditions in which these discovery learning exercises can be used. Exercises developed in farmer field schools are currently being used in the formal education system (CIP-UPWARD, 2003; Arnst et al., 2004). As a learning platform, Going Public also allows similar exercises to be used, but only those that allow people to observe or experience something in a short time, let’s say 10 minutes, rather than exercises requiring weekly or season-long observations (see also Bentley et al., 2003).

Visual aids

All cases described in this book developed or incorporated visual aids for various purposes. Tools in themselves play a flexible role in extension and farmer education; they can be used or modified as one sees fit and, depending on how they are used, can have a greater or lesser impact.

Let us take the example of photos. They were used to stimulate creative thinking in group discussions (Chapters 3 and 7). They also cultivated pride among farmer innovators in various sub-projects (Orsini and Jahn, 2004; Van Mele and
Zakaria, 2004), and helped communities to learn about the social dynamics in the adoption of new technologies (Van Mele and Zakaria, 2002).

But photos were also used as learning tools in training-of-trainers sessions. A4-sized laminated photographs of farmer interviews and focus group discussions confronted project staff with multiple scenarios (Van Mele et al., 2002). It helped young researchers to gain a better eye for details and to be aware of social dynamics when conducting farmer interviews or focus group discussions with a community.

Shushilan combined songs and dance with large paintings depicting major rice pests and natural enemies, how to use organic fertiliser, and so on (Chapter 10). This case, as in the video project, shows the necessity to involve multiple disciplines and farmers in developing messages for rural communities. Scientifically validated information should form the basis of learner-centred farmer education.

The NGO SAFE used agroecosystem analysis in farmer field schools to visualise and evaluate the effect of herbicides on rice plants, earthworms and other living organisms. The tool helped farmers make better-informed decisions; initially they feared herbicides would "poison" the soil or reduce soil fertility if used continuously on the same field (Chowhan et al., 2004). In another sub-project, villagers drew soil fertility maps that helped them in testing and improving their soil fertility management (see Chapter 8).

During a PETRRA workshop on communication material development in April 2004, scientists worked alongside non-formal education specialists and graphic designers to produce diagrams of their uptake and extension methods. Earlier on, the same mix of people had developed extension materials with extensionists and farmers.

But communication is not only about making things visible and easily accessible to a client group. Coordinated efforts are needed to make optimal use of the diversity of information sources, communication tools and learning methods. The way this is shaped is context-specific and depends on the resources available in the innovation system, such as money, motivation, moral support, experience, enthusiasm, knowledge, creativity and collaborative spirit.

The Bangladesh Rice Knowledge Bank: public knowledge organised

PETRRA helped to sustain the research findings in the public domain and to increase user access to updated knowledge and technology beyond projects and organisations by catalysing the Bangladesh Rice Knowledge Bank. This linked to a regional initiative of IRRI to establish digitised, country-specific rice information systems.

Extension service providers are the direct beneficiaries, as both English and Bengali versions of technical information, leaflets and posters can be downloaded for printing. It is regularly updated with an emphasis on low-cost technologies, and is available on CD-ROM, in print and online (www.knowledgebank-brri.org).
The institutional home of the knowledge bank is the Bangladesh Rice Research Institute, linked to the focal area forums, and with back up support from IRRI to ensure long-term sustainability.

INNOVATION SYSTEMS RESEARCH

Innovation systems research emphasises the relationship between innovations and its evolving political, economic and social context. It provides a framework for (i) exploring patterns of partnerships; (ii) revealing and managing the institutional context that governs these relationships and processes; (iii) understanding research and innovation as a social process of learning; and (iv) thinking about capacity building in a systems sense (Hall, 2002). The success of an innovation system depends on its capacity to change in ways that are positive in a development sense. Although organisations are important, it is often individuals rather than organisations that are critical (Clark et al., 2003).

Röling and Jiggins (1998) have argued for some time that more professionalism is needed in thinking about people if sustainable development is to be reached. Learning about people helps to manage institutions that drive innovation systems, and may require certain tools to facilitate this. To give an example, Van Mele and Zakaria (2002) developed a new tool, namely the Innovation Tree, to visualise and analyse the way an innovation spreads over time between community members. Learning about local innovators led to changed behaviour of staff at the Rural Development Academy, as reflected in the way subsequent activities and project proposals were developed.

During the documentation of the cases presented in this book, which was considered an integral part of the institutional learning process, we used narratives, enterprise webs, photographs, actor linkage maps, innovation systems research methods (Hall et al., 2003b; Matsaert et al., 2004) and various other social science methods. We agree with Biggs and Smith (2003) that more tools are needed to analyse organisational cultures and personal behaviours, but at the same time we recommend a wider use of tools for stimulating creative thinking and local ownership (see also Box 21.3).

UNFINISHED BUSINESS

We wanted to encourage partnerships that equally and effectively combined strengths and eliminated weaknesses of different groups of people and their organisations. This doesn't happen often enough, nor is it the accepted norm among government organisations, NGOs or the private sector. We saw changes in behaviour and better joint working practices, though we're still not sure how wider improvements can be stimulated. Will other NGOs and government organisations...
change the way they work and collaborate after observing partnerships forged through PETRRA? Mechanisms to stimulate wider changes are still required.

Box 21.3
Suggestions for Successful Innovation Systems

1. Avoid funding or promoting a single blueprint extension method
2. Use actor analysis to analyse organisational cultures, strengths, ambitions and weaknesses in engineering partnerships
3. Apply innovation systems research in planning projects and identifying local innovations
4. Create early, low-budget opportunities for multiple actors to interact and learn to work with each other
5. Train people involved in community needs assessment to distinguish between implicit and explicit demand
6. Link agricultural R&D activities, whether by government, non-government of private sector, more closely to the established education system
7. Incorporate communication specialist and broad-based professionals with experience in learning approaches from the beginning of the project
8. Build adult learning and discovery learning principles into mass media programmes
9. Increase understanding of institutional elements that are important in developing local ownership over technologies and extension methods
10. Develop mechanisms to increase creative thinking capacity among all actors
11. Introduce new ideas in the system as early as possible in a subtle way
12. Allow for a flexible management structure that can be responsive to opportunities

The emerging practice of NGOs in Bangladesh to link agriculture to their social development programmes is encouraging but still in its infancy. Better promotion of links with agribusiness and cross-fertilisation between extension and education, whether formal or non-formal, would benefit from ‘innovation’. The explicit policy of pro-poor development is already stimulating new ideas, though that must be matched by a flexibility and commitment to change in institutes and organisations. Policies themselves need refining as evidence of success is gathered.

Partnerships and learning networks help to share ideas and create new ones. But ideas need to be tested, to branch out, amplified and be modified if they are to benefit the millions of poor farmers. We do not have enough experience to confidently mix and match extension, education and communication methods and tools. More experimentation is needed and a willingness to accept that not everything works the first time round.

Information sources, such as the Bangladesh Rice Knowledge Bank, are just becoming part of decentralised information hubs. But creating the trough at which the horse can
drink is not enough. How will service providers gain access to these hubs? Validating and incorporating local knowledge and innovations is yet another challenge.

We found many local organisations doing exciting work, but why is this ignored so often? The simple answer is poor documentation. Writing things down takes time, a certain creativity and persistence. It also has to be seen as rewarding in its own right. We hope that the efforts made in writing this book help to shine the light on the forgotten heroes of local development, and that the chapters are seen as a warm tribute in part to local creativity and methodological diversity.

At the end of PETRRA can we say that we've answered all the questions? The short answer is that this is never going to be possible. Development doesn't start and stop. It keeps on refining, applying, going back and then going forward, providing solutions and doing new things alongside old improved things. This book is our way of documenting what PETRRA and its partners have done and achieved. It points to things that still need to be done. Above all else, this book is a testament to the innovations produced by committed champions for pro-poor development in Bangladesh. We hope it suggests how we can each become one and provides the inspiration for you to have a go yourself.

REFERENCES AND RECOMMENDED READING

People and Pro-Poor Innovation Systems

289

Brief 7. IRRI, Dhaka, Bangladesh.

for Sustainable Agriculture and Natural Resource Management. A Sourcebook. CIP/UPWARD, Philippines, in press.

From 1999 to 2004 the PETRRA (Poverty Elimination Through Rice Research Assistance) project explored the development of innovative extension mechanisms through a learning by doing process with multiple service providers. Partnerships linked government, non-government and private sectors as appropriate. Topics addressed by the project include seed production, marketing and distribution systems, crop and soil fertility management, postharvest technologies, mobile pumps, aromatic rice and integrated rice-duck farming. The methods used include women-led group extension, whole family approach, participatory video, Going Public and picture songs. This book examines these approaches to extension and assesses their potential for replicability and scaling-up. It includes four thematic sections with people-centred case studies and a conclusion with practical applications of the transaction cost theory. This highly original volume will interest a wide range of readers concerned with agricultural extension and rural development.